Dr. Ran Xu | Materials for Energy Applications | Best Researcher Award

Hunan Institute of Technology | China

Dr. Ran Xu is a talented young researcher and lecturer at the School of Safety and Management Engineering, Hunan Institute of Technology, China. She obtained her Ph.D. in Safety Science and Engineering from Chongqing University, following her master’s degree from Henan Polytechnic University and a bachelor’s degree in Safety Engineering from Hebei University of Science and Technology. Dr. Xu has established herself as an emerging scholar in materials science and environmental safety, focusing on the development and application of porous carbon materials for gas separation, adsorption, and energy utilization. Her innovative research on coal-based activated carbon and nitrogen-doped porous materials contributes to advancements in methane recovery, carbon capture, and sustainable energy technologies. She has published five impactful scientific papers in high-quality international journals such as Journal of Materials Science, Chemical Engineering & Processing, Nanomaterials, RSC Advances, and AIChE Journal. With an h-index of 4, five published documents, and 177 citations from 160 scientific sources, Dr. Xu demonstrates promising research potential and growing global recognition. Her interdisciplinary work combines materials chemistry, environmental engineering, and data-driven modeling, including deep learning applications in rock fracture analysis and gas adsorption kinetics. Beyond her research, she actively participates in academic collaborations, contributing to the development of sustainable energy solutions and advanced material design. Dr. Ran Xu’s scholarly excellence, innovative approach to energy materials, and dedication to advancing safety and sustainability in engineering make her an outstanding representative of the new generation of scientists driving innovation in environmental and material research.

Profile: Scopus

Featured Publications

Xu, R., Xian, X., Song, Z., & Gu, M. (2023). The impact of effective pore percentage on CH₄/N₂ separation in coal-based activated carbon. Journal of Materials Science, 58, 1–14.

Xu, R., Xian, X., Song, Z., & Gu, M. (2023). Air preoxidation and Fe-catalyzed cooperative effect for preparation of high-performance coal-based granular activated carbon: Enhancing low-concentration CH₄ recovery and utilization. Chemical Engineering & Processing: Process Intensification, 193, 109555.

Li, Y., Xu, R., Wang, X., Wang, B., Cao, J., Yang, J., & Wei, J. (2018). Waste wool-derived nitrogen-doped hierarchical porous carbon for selective CO₂ capture. RSC Advances, 8, 19818–19826.

Li, Y., Xu, R., Wang, B., Wei, J., Wang, L., Shen, M., & Yang, J. (2019). Enhanced N-doped porous carbon derived from KOH-activated waste wool: A promising material for selective adsorption of CO₂/CH₄ and CH₄/N₂. Nanomaterials, 9, 266–271.

Gu, M., Xian, X., Miao, B., Chen, X., Du, X., Liu, Z., & Xu, R. (2022). A new approach for modeling adsorption kinetics and transport of methane and carbon dioxide in shale. AIChE Journal, 68, e17578.

Song, Z., Zhang, Z., Huang, J., & Xu, R. (n.d.). Utilizing deep learning and AE waveform to identify rock fracture stages under 3-D stress paths. SSRN Electronic Journal.

Dr. Ran Xu | Materials for Energy Applications | Best Researcher Award

You May Also Like