Dr. Hicham Lahlou | Sustainability in Material Science | Research Excellence Award

Dr. Hicham Lahlou | Sustainability in Material Science | Research Excellence Award

Universiti Sains Malaysia | Malaysia

Dr. Hicham Lahlou is a multidisciplinary researcher whose work reflects a strong commitment to sustainability-driven science, systems thinking, and interdisciplinary knowledge integration. His academic profile demonstrates an ability to connect scientific concepts, analytical frameworks, and human-centered understanding, which are essential for advancing sustainability in material science and related domains. Dr. Lahlou’s research approach emphasizes how scientific knowledge, terminology, and conceptual frameworks shape the way materials, technologies, and sustainable practices are understood, communicated, and implemented across cultures and disciplines. By applying cognitive and analytical perspectives, he contributes to clearer interpretation of scientific concepts that underpin sustainable material development, environmental responsibility, and informed technological decision-making. His work supports the broader sustainability agenda by enhancing the clarity, accessibility, and transferability of scientific knowledge related to materials, energy, and environmental systems. Dr. Lahlou is actively engaged in interdisciplinary collaboration, academic leadership, and research dissemination, contributing to scholarly dialogue that bridges science, language, and sustainability-oriented innovation. In addition to his research activities, he is deeply involved in teaching, mentoring, and curriculum development, fostering critical thinking and scientific literacy among students and early-career researchers. His professional experience reflects a strong balance between academic rigor, practical engagement, and global collaboration. Dr. Lahlou’s research philosophy highlights the importance of knowledge integration, communication, and ethical responsibility in advancing sustainable material science and engineering practices. Through his interdisciplinary vision, commitment to research quality, and contribution to sustainability-focused scientific understanding, Dr. Hicham Lahlou has established a distinctive academic profile and is a highly deserving recipient of the Research Excellence Award.

Citation Metrics (Scopus)

40
30
20
10
0

Citations
31

Documents
13

h-index
3

Citations

Documents

h-index

View Scopus Profile    View Orcid Profile    View Google Scholar Profile

Featured Publications


Conceptual Metaphors of Time in Malaysian English Textbooks: A Comparative Cognitive Linguistic Study


– H. Lahlou, K. Rajandran, 3L: Language, Linguistics, Literature, 2025

Language Use and Idiomatic Meaning in Channels Television Political Talk-Show


– M. M. Salihu, H. Lahlou, Journal of Language and Communication, 2025

The Composite Model of “Speak-Write” for Success in EFL Writing Classroom: A Study on Chinese University Freshmen


– J. Wang, Y. Azam, H. Lahlou, Attarbawiy: Malaysian Online Journal of Education, 2024

Mr. Pierre D’Arras | Sustainability in Material Science | Research Excellence Award

Mr. Pierre D’Arras | Sustainability in Material Science | Research Excellence Award

Van Robaeys Frères | France

Mr. Pierre D’Arras is a distinguished industrial leader and innovator recognized for his outstanding contributions to sustainability in material science, particularly in the field of natural fibers and eco-responsible materials. He serves as the Chief Executive Officer of Van Robaeys Frères, a major industrial group specializing in the processing, refining, and valorization of flax fibers, where he oversees integrated activities spanning agriculture, material transformation, logistics, and industrial operations. With a strong engineering background from Arts et Métiers (ICAM Lille), Mr. D’Arras combines technical expertise with strategic vision to advance sustainable material solutions rooted in renewable and bio-based resources. His professional journey reflects deep engagement in material processing, production optimization, and research-driven innovation, with prior experience in engineering management, production supervision, and consultancy focused on natural fiber innovation. Through his leadership, flax has been positioned as a high-performance, low-impact alternative to conventional materials, supporting applications in textiles, composites, construction, and industrial sectors aligned with circular economy principles. Mr. D’Arras has played a key role in developing innovative, value-added products derived from natural fibers, reinforcing the link between sustainable agriculture and advanced material science. Beyond industry, he actively contributes to institutional and professional bodies, serving in advisory, judicial, and consultative roles related to industry, social responsibility, and economic governance. His engagement in professional networks and continuous leadership development initiatives reflects his commitment to responsible industrial growth and innovation. By bridging engineering, sustainability, and material science, Mr. D’Arras has significantly advanced the industrial adoption of environmentally friendly materials. His impact on sustainable material development, industrial transformation, and leadership excellence makes him a highly deserving recipient of the Research Excellence Award.

Citation Metrics (Scopus)

150
100
50
20
0

Citations
112

Documents
11

h-index
5

Citations

Documents

h-index

View Scopus Profile

Featured Publications

Prof. Dr. Debasis Sarkar | Sustainability in Material Science | Research Excellence Award

Prof. Dr. Debasis Sarkar | Sustainability in Material Science | Research Excellence Award

Pandit Deendayal Energy University | India

Prof. Dr. Debasis Sarkar is a distinguished academic and research leader in Civil Engineering, widely recognized for his expertise in Construction Engineering, Project Management, Infrastructure Development, and Risk Management for large-scale transportation and metro rail systems. He has established a prolific academic and professional career as a senior faculty member in Civil Engineering, contributing significantly to teaching, research, consultancy, and academic leadership at renowned institutions. His research has achieved substantial scholarly visibility, with 490 citations across 396 documents, an h-index of 15, and 56 published documents, reflecting the strong impact and reliability of his scientific contributions worldwide. Over his career, he has produced high-quality research outputs in international and national journals, conference proceedings, and industry reports, with multiple articles published in reputable Scopus-indexed journals and several publications earning Best Paper Awards at prestigious global conferences. Prof. Dr. Sarkar’s research spans areas including risk management for metro rail projects, applications of Building Information Modeling (BIM) for infrastructure optimization, lean project delivery systems, and innovative construction technologies for sustainable urban development. Alongside his research achievements, he has supervised numerous Master’s and PhD scholars and guided a large number of dissertations in Construction and Infrastructure Engineering. His extensive consultancy portfolio includes project management assignments for metro rail systems, bus rapid transit corridors, sustainable transportation initiatives, and industrial and real-estate infrastructure projects. As an academic administrator, he has played a vital role in curriculum development, training coordination, industry linkage, and program leadership while contributing as a visiting expert to national and international institutions. Prof. Dr. Debasis Sarkar remains dedicated to advancing engineering research, innovation in infrastructure systems, and professional excellence, and he continues to be an influential contributor to the development of modern engineering education and practice.

Profiles: Scopus | Orcid | Google Scholar

Featured Publications

Assessing Road Safety Challenges in Rapidly Urbanizing Cities: A Fuzzy Logic and Factor Comparison Method Approach. (2026). Journal of Legal Affairs and Dispute Resolution in Engineering and Construction.

Evaluation of key performance indicators affecting effective implementation of integrated BIM-blockchain technology through fuzzy AHP-ANP tool in bullet train project in India. (2025). Innovative Infrastructure Solutions.

Predicting the success possibility of Internet of Things and cloud computing implementation in the construction sector: A case study from Gujarat, India. (2025). Asian Journal of Civil Engineering.

Risk-integrated scheduling for commercial building construction: A BIM and Monte Carlo simulation approach. (2025). Asian Journal of Civil Engineering.

Predictive Analysis of Carbon Dioxide Emissions in Heterogeneous Urban Traffic using Neural Networks. (2025). Emission Control Science and Technology.

Assist. Prof. Dr. Leila Ma’mani | Sustainability in Material Science | Best Researcher Award

Assist. Prof. Dr. Leila Ma’mani | Sustainability in Material Science | Best Researcher Award

Agricultural Biotechnology Research Institute of Iran (ABRII) | Iran

Assist. Prof. Dr. Leila Ma’mani is a distinguished Iranian researcher in the fields of nanotechnology, organic chemistry, and advanced nano-drug delivery systems, currently serving as Assistant Professor in the Department of Nanotechnology at the Agricultural Biotechnology Research Institute of Iran under AREEO. She has built an outstanding scientific profile with 2,290 citations, indexed across 1,963 documents, and has produced 76 publications, reflecting her extensive contributions to scientific knowledge. Her impressive scholarly influence is further demonstrated by an h-index of 28, positioning her among the top-tier researchers in nanotechnology and applied agricultural sciences. Dr. Ma’mani’s research focuses on the design and synthesis of nanoporous and hybrid nanocomposite delivery systems, targeted release technologies for bioactive and chemical agents, magnetic nanoparticles, nanobiocatalysis, environmentally sustainable nanomaterials, and innovative CRISPR/Cas-based agricultural nanocarriers. She has actively contributed to national and international scientific leadership, serving in multiple managerial and committee roles including headship of the Nanotechnology Department and secretary roles in scientific and research committees within the Ministry of Agriculture. Dr. Ma’mani has supervised and advised numerous postgraduate researchers and continues to support multidisciplinary training and innovation. Her awards and recognitions highlight her leadership and pioneering contributions in the development of sustainable nanotechnological approaches for agriculture, biotechnology, plant science, and medical applications. Throughout her career, she has published widely in high-impact journals and collaborated with research teams working on drug delivery, nanopesticides, nano-fertilizers, advanced catalytic materials, and biosafety applications. Her work has produced real-world contributions that address global needs related to food security, crop protection, biomedical therapy, environmental safety, and smart controlled-release nanotechnology systems. Dr. Leila Ma’mani remains deeply committed to advancing scientific excellence and translating research outcomes into practical industrial, agricultural, and health solutions through cutting-edge nanotechnology innovation.

Profiles: Scopus | Google Scholar

Featured Publications

Jokarshourijeh, F., Ma’mani, L., Hossein, R., & Sheikhigarjan, A. (2025). Organically modified biogenic graphene oxide–mesoporous silica nanoparticles for eco-friendly and tailored release of Azadirachtin (neem) biopesticide. Chemical and Biological Technologies in Agriculture, 12(1), 159.

Shemshaki, N. S., Sharifi, K., Khodaparast, S. A., Mamani, L., & Mousanejad, S. (2024). The efficiency of mineral compounds for the control of strawberry blossom blight caused by Botrytis cinerea. European Journal of Plant Pathology, 170(3), 491–500.

Eigharlou, M., Javidpoor, S., Mohammadi, A., Khelghatibana, F., Nami, Y., … (2024). Evaluation of herbicidal potential of Siderophores produced by Amycolatopsis lurida strain 407. Scientific Reports, 14(1), 26212.

Najafzadeh Nansa, M., Ma’mani, L., & Ghorbanloo, M. (2024). Control of mushroom sciarid fly with an ecofriendly nanoinsecticide. Journal of Biosafety, 16(4), 81–94.

Tahere Raiesi Ardali, A. M., Ma’mani, L., & Chorom, M. (2023). *The efficiency of Fe3O4 nanoparticles coated with humic acid on tomato growth characteristics (Lycopersicon esculentum L.). Journal of Plant Ecophysiology, 1(14), 34.

Mr. Dae Hyeob Yoon | Materials Science | Best Researcher Award

Mr. Dae Hyeob Yoon | Materials Science | Best Researcher Award

Mr. Dae Hyeob Yoon is currently an undergraduate researcher in Mechanical Engineering at Chungbuk National University (CBNU), South Korea. His research interests lie in micro/nanotechnology, sensors, and MEMS. Despite being at an early stage in his academic career, he has already contributed to a peer-reviewed publication in Applied Sciences and participated in nationally recognized research programs. His early engagement in advanced materials research and active academic presentation record demonstrate a deep commitment to scientific inquiry.

Mr. Dae Hyeob Yoon | Chungbuk National University (CBNU) | South Korea

Profile

ORCID

Education

Mr. Yoon is pursuing a Bachelor of Science in Mechanical Engineering at CBNU. Alongside his coursework, he has been actively involved in undergraduate research initiatives, including the Undergraduate Research Opportunities Program (UROP). His academic training has allowed him to integrate theoretical knowledge with experimental design and fabrication techniques related to flexible electronics and nanomaterials.

Research Experience 

As an undergraduate, Mr. Yoon has contributed to one completed research project involving the development of a flexible and conductive heating membrane. He has presented his work at the Korean Society of Mechanical Engineers (KSME) and will present at the EKC conference in Austria. His publication demonstrates competency in research design, experimental methodology, and technical writing, marking significant early-career achievements.

Contributions

Mr. Dae Hyeob Yoon’s research is focused on developing flexible heating technologies for use in wearable electronics and smart textiles. His current work involves creating a scalable, low-voltage, and mechanically stable heating platform using advanced materials and fabrication techniques. This research addresses major limitations in existing flexible heaters, such as fragility and high energy demands. The technology he is advancing has significant potential for integration into next-generation wearable devices, enabling personalized and adaptive applications in health, fitness, and smart clothing systems. His innovative approach contributes meaningfully to the field of flexible, functional electronics.

Research Focus 

Mr. Yoon’s primary research focus is on the application of micro and nanotechnology to develop scalable and efficient platforms for wearable and flexible electronics. His current work addresses key challenges in mechanical stability and power efficiency, contributing to emerging markets in personalized technology and smart textiles. His interdisciplinary interest bridges mechanical engineering with material science and electronics.

Publication

Development of a Flexible and Conductive Heating Membrane via BSA-Assisted Electroless Plating on Electrospun PVDF-HFP Nanofibers

Author: Dae Hyeob Yoon

Conclusion

Mr. Dae Hyeob Yoon is a motivated and talented early-stage researcher whose contribution to nanofiber-based heating technologies is noteworthy. His research potential is clear, and with continued academic development and broader engagement in scientific activities, he has the capacity to evolve into a strong candidate for high-level research awards. At this time, he would be better suited for young researcher or emerging researcher recognition, while continuing to build toward Best Researcher status in the future.

Mrs Charoula Iliaskou | Materials Science | Best Researcher Award

Mrs Charoula Iliaskou | Materials Science | Best Researcher Award

Mrs. Charoula Iliaskou is a medical physicist and researcher at the University Medical Center Freiburg 🇩🇪, specializing in intraoperative electron beam radiation therapy (IOERT) ⚡🏥. She holds an MSc in Medical Physics from the National and Kapodistrian University of Athens 🇬🇷, graduating top of her class 🎓. Her research explores targeted dosimetry, radiation planning, and magnetic nanoparticles for hyperthermia therapy 🧲🧪. Skilled in Monte Carlo simulations, clinical software, and nanomaterials analysis, she integrates theory with real-world clinical application 🔬💻. Charoula’s work contributes to more precise, effective cancer therapies and positions her as a promising figure in radiation oncology research 🌍📈.

Mrs Charoula Iliaskou, University Medical Center Freiburg, Germany

Profile

ORCID

SCOPUS

GOOGLESCHOLAR

Education 🎓

Mrs. Charoula Iliaskou holds an MSc in Medical Physics – Radiation Physics from the National and Kapodistrian University of Athens (2020), where she graduated top of her class (Rank 1/19, Grade 9.14/10) 🎓🏅. She earned her BSc in Physics from Aristotle University of Thessaloniki in 2018 (Rank 2/23, Grade 8.18/10) 📘🔬. In 2017, she participated in the Erasmus+ program at the University of Duisburg-Essen, Germany, gaining international academic experience 🌍📖. Her academic journey began with an excellent high school diploma from Xanthi, Greece (Grade 18.9/20) 🏫📐, demonstrating consistent excellence in science and education.

Experience 👩‍🔬

Mrs. Charoula Iliaskou is currently a Physicist in the Division of Medical Physics at the University Medical Center Freiburg 🇩🇪, where she develops image-guided planning and verification workflows for IOERT (Intraoperative Electron Beam Radiation Therapy) 🏥⚡. Her MSc research focused on in vivo dosimetry for breast cancer using EBT3 Gafchromic films 🎯🧪. She has hands-on training in radiation treatment planning and quality assurance from AHEPA Hospital and early research experience in nanoparticle hyperthermia and magnetometry 🧲🔬. Her work combines clinical physics with nanoscale science, showing deep engagement from student researcher to applied medical physicist 👩‍🔬📈.

Honors and Awards 🏅

Mrs. Charoula Iliaskou was honored with the “Best Undergraduate Student Internship of the Physics Department for the year 2017–2018” 🏅 by the Aristotle University of Thessaloniki, Greece 🇬🇷. This award recognized her outstanding performance, commitment, and research initiative during her clinical internship in radiation oncology and medical physics 🏥🔬. It reflects her early dedication to academic and professional excellence, as well as her ability to integrate theoretical knowledge into practical medical applications 🎓⚙️. This recognition served as a launching point for her future achievements in medical physics, marking her as an emerging talent in the field 🌟.

Skills

Mrs. Charoula Iliaskou brings a powerful set of scientific and technical skills to her research in medical physics 🧪. Her expertise includes radiation dosimetry, magnetic nanoparticle characterization (VSM, SQUID), X-ray diffraction, SEM-TEM imaging, and Monte Carlo simulations 🔬📊. She is proficient in tools such as MATLAB, SPSS, EGSnrc, ImageJ, and clinical planning systems like ECLIPSE and RADIANCE 💻🧠. Charoula is multilingual—fluent in Greek, English, Spanish, and German 🗣️—and excels in teamwork, leadership, communication, and project management 🤝📅. Her skillset bridges computational analysis, clinical application, and experimental research, making her a highly versatile scientist.

Research Focus 🔬

Mrs. Charoula Iliaskou focuses her research on medical and radiation physics, particularly on intraoperative electron beam radiation therapy (IOERT) and targeted dosimetry techniques for cancer treatment ⚛️🏥. Her interests span the development of image-guided planning workflows, Monte Carlo simulations, and nanoparticle-based hyperthermia therapies 🧲🔬. She combines advanced analytical tools like radiation dosimetry, X-ray diffraction, and SEM-TEM imaging with clinical software such as ECLIPSE and RADIANCE 💻📊. With interdisciplinary expertise bridging nanotechnology, oncology, and statistical modeling, her research aims to improve precision and outcomes in radiation oncology and cancer therapy 🌍📈.

Publications 📚

Minimum and optimal requirements for a safe clinical implementation of ultra-high dose rate radiotherapy: A focus on patient’s safety and radiation protection
✍️ Authors: C. Garibaldi, S. Beddar, N. Bizzocchi, T.T. Böhlen, C. Iliaskou, R. Moeckli, …
📚 Journal: Radiotherapy and Oncology, Vol. 196, 110291 (2024)
🛡️ Theme: Radiation safety, FLASH radiotherapy, clinical implementation

 Ex-vivo evaluation of magnetite magnetic nanoparticles as magnetic hyperthermia carriers
✍️ Authors: N. Maniotis, E. Myrovali, Z. Kalpaxidou, C. Iliaskou, M. Angelakeris, …
📚 Conference: 2018 EMF-Med 1st World Conference on Biomedical Applications of Electromagnetic Fields
🧲 Theme: Magnetic nanoparticles, hyperthermia therapy, biomedical applications

Evaluation of RADIANCE Monte Carlo algorithm for treatment planning in electron based Intraoperative Radiotherapy (IOERT)
✍️ Authors: C. Iliaskou, G. Rossi, I. Sachpazidis, V. Boronikolas, M. Gainey, D. Baltas
📚 Journal: Zeitschrift für Medizinische Physik, 2024
🧮 Theme: Monte Carlo simulation, IOERT, treatment planning systems

Development of a TLD-100 based setup for in vivo dosimetry in Intraoperative Electron Beam Radiation Therapy (IOERT): An experimental and clinical evaluation
✍️ Authors: C. Iliaskou, M. Gainey, B. Thomann, M. Kollefrath, R. Saum, E. Gkika, …
📚 Journal: Zeitschrift für Medizinische Physik, 2025
📏 Theme: In vivo dosimetry, TLD-100, intraoperative radiation

PS02.29 Clinical Evaluation of a TLD-Based In-Vivo Dosimetry Workflow in Pancreatic Intraoperative Electron Beam Radiation Therapy (IOERT): One Case Report Study
✍️ Authors: C. Iliaskou, M. Gainey, M. Kollefrath, E. Gkika, U. Wittel, D. Ruess, A.L. Grosu, …
📚 Conference/Journal: Case study presentation, clinical physics context
🩺 Theme: Clinical evaluation, pancreatic cancer, IOERT workflow