Kata Sreelakshmi | Nanomaterials | Best Researcher Award

Kata Sreelakshmi | Nanomaterials | Best Researcher Award

Assist. Prof. Dr Kata Sreelakshmi, Madanapalle Institute of Technology & Science, India

Dr. Kata Sreelakshmi is an accomplished researcher in applied mathematics and fluid mechanics, specializing in non-Newtonian fluids, heat transfer, and MHD flows. She holds a Ph.D. in Applied Mathematics from Sri Padmavathi Mahila Visvavidyalayam (2018) and has an extensive publication record in high-impact journals, including work on nanofluids and dual stratification effects. She has presented her research at international conferences and has taught and mentored students in mathematics. Her work is significant in engineering, materials science, and environmental sustainability. Dr. Sreelakshmi’s expertise makes her a strong candidate for the Best Researcher Award. πŸ§‘β€πŸ«πŸ”¬πŸ“š

Publication Profile

GoogleScholar

Scopus

Educational Background πŸŽ“

Dr. Kata Sreelakshmi completed her Ph.D. in Applied Mathematics from Sri Padmavathi Mahila Visvavidyalayam in 2018. She also earned an M.Phil. with distinction (78%) in Applied Mathematics in 2015 and an M.Sc. in the same field with distinction (86%) in 2011. Her B.Sc. (M.P.C) from Sri Venkateswara University, Tirupati, was awarded first class (70%). Dr. Sreelakshmi excelled academically, securing distinction in both her Intermediate (87%) and S.S.C (83%) exams, showcasing her consistent academic performance across all levels. πŸ“šπŸŽ“πŸ”’

Current Role and Focus πŸ’Ό

Dr. Kata Sreelakshmi is currently serving as an Assistant Professor at Madanapalle Institute of Technology & Science since September 13, 2023. Previously, she held positions as Assistant Professor at Siddartha Institute of Science and Technology (Sep 2022 – Aug 2023), Sri Venkateswara Vedic University, Tirupati (2019-2022), Yogananda Institute of Technology and Science, Tirupati (Jul 2018 – Jun 2019), and Emerals’s Degree College, Tirupati (2011-2014). She has taught M.Sc. students in subjects like Ordinary and Partial Differential Equations, Numerical Methods, and Laplace Transforms, showcasing her expertise in advanced mathematical topics. πŸ“šπŸŽ“

Seminars/Conferences Attended

Dr. Kata Sreelakshmi has presented her research at several prestigious national and international conferences, showcasing her expertise in fluid dynamics, heat transfer, and nanofluid flow. Notable presentations include the effect of Arrhenius activation energy and dual stratifications on Maxwell nanofluid flow at NIT Warangal (2020), and the study of melting heat transfer in the stagnation point flow of a Jeffrey-nano fluid at SPMVV, Tirupati (2016). She also presented on the impact of Hall current in flow induced by a stretching surface at S.V. Tirupati (2015). Her work addresses advanced topics in MHD flows, nanofluids, and thermal radiation. πŸ”₯πŸ”¬πŸ“Š

Research Focus Area 🌱🧬

Dr. Kata Sreelakshmi’s research primarily focuses on advanced heat transfer and fluid dynamics, particularly in non-Newtonian fluid flows and nanofluids. Her work explores heat transfer analysis in non-Newtonian flows with the dispersion of nanoparticles, the effects of thermal radiation, and the role of stretching surfaces. She investigates complex fluid dynamics in various systems, including magnetohydrodynamic (MHD) and hybrid nanofluid flows, entropy generation, and boundary layer phenomena. Her research includes studies on energy transport, thermophoretic effects, and the impact of various nanoparticle shapes on heat transfer performance. This area is crucial for engineering applications like cooling systems, energy efficiency, and advanced manufacturing. πŸŒ‘οΈπŸ”¬

Publications Top NotesΒ πŸ“šπŸŒ

Effect of magnetic field on the flow and heat transfer in a Casson thin film on an unsteady stretching surface in the presence of viscous and internal heating

A study on entropy generation on thin film flow over an unsteady stretching sheet under the influence of magnetic field, thermocapillarity, thermal radiation and internal heat …

Heat transfer analysis in the non-orthogonal flow of a non-Newtonian nanofluid with non-linear thermal radiation

Dual Stratification Effects on Double-Diffusive Convective Heat and Mass Transfer of a Sheet-Driven Micropolar Fluid Flow

Dual solutions of an unsteady flow, heat and mass transfer of an electrically conducting fluid over a shrinking sheet in the presence of radiation and viscous dissipation

Homotopy analysis of an unsteady flow heat transfer of a Jeffrey nanofluid over a radially stretching convective surface

Heat transfer analysis in a micropolar fluid with non-linear thermal radiation and second-order velocity slip

Effects of dual stratification on non-orthogonal non-Newtonian fluid flow and heat transfer

Conclusion πŸ”

Dr. Kata Sreelakshmi’s academic qualifications, research publications, conference presentations, and teaching experience make her an exemplary candidate for the Best Researcher Award. Her work in applied mathematics, fluid mechanics, and heat transfer is highly relevant to contemporary issues in engineering, energy, and environmental science. She has demonstrated a consistent commitment to advancing knowledge in her field and has made significant contributions to the understanding of complex fluid behavior. Additionally, her role as a mentor and educator further adds to her qualifications as a top-tier researcher. Therefore, she is certainly deserving of the Best Researcher Award.

Semra Gurtas Dogan | Nanomaterials | Best Researcher Award

Semra Gurtas Dogan | Nanomaterials | Best Researcher Award

Assoc. Prof. Dr Semra Gurtas Dogan, Hakkari University, Turkey

🌟 Assoc. Prof. Dr. Semra Gurtas Dogan is a dedicated physicist at Hakkari University, contributing significantly to academic and research fields. With a Ph.D. in Physics from Akdeniz University (2019), her groundbreaking thesis on Gravitational Waves in (2+1) Dimensions has pushed the boundaries of understanding cosmic phenomena, dark matter, and dark energy. Her prolific research includes over 20 high-impact publications, covering topics such as relativistic quantum mechanics, vector bosons, and fermion dynamics in exotic spacetime. Dr. Gurtas Dogan’s work, widely recognized in prestigious journals, cements her as a leader in physics and a notable candidate for the Best Researcher Award. πŸ†πŸ“šβœ¨

Publication Profile

GoogleScholar

Orcid

Educational Background πŸŽ“

πŸŽ“ Assoc. Prof. Dr. Semra Gurtas Dogan has an impressive educational background in physics, showcasing her passion for exploring complex theories. She earned her Ph.D. (2013–2019) from Akdeniz University, Turkey, focusing on Gravitational Waves in (2+1) Dimensions, delving into their role in explaining cosmic mysteries like dark matter and dark energy. Her M.Sc. (2009–2013) research involved analyzing quantum mechanical behaviors of spin-1 and spin-1/2 particles in curved spacetime, contributing to the field of relativistic quantum mechanics. Completing her undergraduate studies (2004–2008) at Akdeniz University, Dr. Gurtas Dogan’s work embodies dedication to advancing physics. πŸ”¬βœ¨πŸŒŒ

Current Role and Focus πŸ’Ό

🏫 Assoc. Prof. Dr. Semra Gurtas Dogan has been a dedicated academic at Hakkari University since 2021, serving in the Vocational School of Health Services, Medical Services, and Techniques Department. Her role at this institution highlights her commitment to teaching, mentoring, and contributing to the university’s research endeavors. Dr. Gurtas Dogan brings her extensive expertise in physics, particularly her knowledge of gravitational waves and quantum mechanics, to foster an environment of academic excellence. Through her work, she continues to inspire and guide students and colleagues, playing a crucial role in advancing educational standards and scientific exploration. πŸŒŸπŸ“šπŸ’‘

Research Focus Area 🌱🧬

πŸ“š Assoc. Prof. Dr. Semra Gurtas Dogan has made remarkable strides in theoretical and high-energy physics, particularly focusing on gravitational waves, relativistic quantum mechanics, and particle dynamics in exotic spacetime backgrounds. Her extensive research covers topics like the behavior of fermions and vector bosons in magnetized environments, the influence of magnetic flux on quantum systems, and particle interactions in curved spacetimes such as wormholes and black holes. Through detailed analyses, she has significantly contributed to understanding how these phenomena relate to cosmic mysteries like dark matter, dark energy, and early universal dynamics. πŸŒ€πŸŒŒπŸ”¬

Publication Top Notes

Damped modes for a bosonic quantum oscillator in the near-horizon geometry of the BTZ black hole

Relativistic dynamics of oppositely charged two fermions interacting with external uniform magnetic field

Vector bosons in the rotating frame of negative curvature wormholes

Quasinormal modes of Dirac field in 2+ 1 dimensional gravitational wave background

Relativistic quantum mechanical spin-1 wave equation in 2+ 1 dimensionalspacetime

Effect of internal magnetic flux on a relativistic spin-1 oscillator in the spinning point source-generated spacetime

Relativistic fermions and vector bosons in magnetized three-dimensional space-time with a cosmological constant

Quasibound states for a scalar field under the influence of an external magnetic field in the near-horizon geometry of the BTZ black hole with torsion

Photonic modes in twisted graphene nanoribbons

A new approach to compute the dipole moments of a Dirac electron

Conclusion πŸ”

Assoc. Prof. Dr. Semra Gurtas Dogan’s publication record, extensive research on gravitational waves, quantum mechanics, and theoretical physics, along with her contributions to various high-impact journals, demonstrate her as an excellent candidate for the Best Researcher Award. Her work not only advances scientific understanding but also showcases her capacity for innovative research, making her an asset to the global scientific community.