Dr. Muhammad Murtaza | Metals and Alloys | Excellence in Research Award

Dr. Muhammad Murtaza | Metals and Alloys | Excellence in Research Award

Absolute Pure EnviroSci Limited APEL | Hong Kong | Pakistan

Dr. Muhammad Murtaza is an accomplished materials scientist specializing in metals and alloys, with strong expertise in metallic nanostructures, functional coatings, and materials for flexible and printable electronics. His research focuses on the controllable synthesis of metal nanomaterials, including silver, copper, gold, and nickel systems, and their integration into high-performance conductive inks, strain sensors, and electronic devices. Dr. Murtaza has developed innovative synthesis strategies for nanostructured metals and metal–ceramic composites, enabling improved electrical conductivity, mechanical flexibility, and structural stability for advanced electronic applications. His work bridges fundamental materials science with applied engineering, contributing to emerging technologies in wearable electronics, smart sensors, and functional thin films. He has collaborated with leading international research groups and has held research appointments across prominent academic and industrial laboratories, where he contributed to interdisciplinary projects combining materials science, physics, and electronic engineering. In addition to metallic systems, his expertise extends to ceramic materials, two-dimensional materials, composite coatings, and piezoelectric structures, supported by extensive experience with advanced characterization techniques including electron microscopy, spectroscopy, diffraction, and scanning probe methods. Dr. Murtaza is also an experienced educator, having taught materials science and physics at undergraduate and graduate levels, and mentored student research projects in nanomaterials and electronic materials. His work demonstrates a strong commitment to scientific rigor, innovation, and practical impact, particularly in the development of metal-based functional materials for next-generation technologies. Through sustained research excellence, interdisciplinary collaboration, and technological innovation, Dr. Muhammad Murtaza has established himself as a valuable contributor to the field of metals and alloys, making him a highly deserving recipient of the Excellence in Research Award.

Citation Metrics (Scopus)

400
300
200
100
0

Citations
341

Documents
12

h-index
6

Citations

Documents

h-index

View Scopus Profile
  View Google Scholar Profile

Featured Publications

Assist. Prof. Dr. Riming Wu | Metals and Alloys | Research Excellence Award

Assist. Prof. Dr. Riming Wu | Metals and Alloys | Research Excellence Award

Shanghai University of Engineering Science | China

Assist. Prof. Dr. Riming Wu is a distinguished materials scientist specializing in metals and alloys, with a strong focus on the development and application of high-performance special alloys. He serves as an Associate Professor in materials processing and leads a research group dedicated to advanced special steels, where his work bridges fundamental materials science and industrial implementation. His researchbainitic expertise spans high-quality special steels, hot work die steels, automotive high-strength steels, and advanced alloy design for demanding service environments. Dr. Wu has demonstrated outstanding leadership in research and innovation by directing numerous competitive projects in collaboration with national programs and industrial partners, contributing significantly to the advancement and commercialization of high-wear-resistant, high-thermal-conductivity, and high-strength alloy systems. He has authored more than twenty SCI-indexed journal publications in leading international materials science journals, many as corresponding author, reflecting his strong academic influence in alloy microstructure control, precipitation behavior, and mechanical property optimization. In addition to his scholarly contributions, Dr. Wu holds multiple authorized invention patents related to special steel processing technologies, several of which have been successfully transferred to industrial-scale production, highlighting his impact on technology translation and industrial upgrading. His work has provided practical solutions for tooling steels, hot stamping steels, and extrusion die materials, supporting applications in automotive manufacturing and advanced forming technologies. Recognized for his academic rigor, innovation capacity, and commitment to industry-oriented research, Dr. Wu exemplifies excellence in metals and alloys research. His sustained contributions to high-performance alloy development, combined with mentorship and collaborative engagement, make him a highly deserving candidate for the Research Excellence Award.

Citation Metrics (Scopus)

450
300
150
0

Citations
430

Documents
29

h-index
12

Citations

Documents

h-index


View Scopus Profile

Featured Publications

Silicon in Die Steels
– Metals and Materials International, 2025

Fluctuations of Properties of Cr–Mo–V Hot Work Die Steels by Artificial Increment of Vanadium
– 2022 Shan Huang, Riming Wu (Corresponding Author), Wei Li, Na Min, Xiaocheng Li
Effect of Mo-Related Precipitation Behavior on the Strengthening and Thermal Stability of 4Cr5Mo2V Die Steel
– Journal of Materials Engineering and Performance (SCI), 2022, 31:10213–10224

Tao Hu, Riming Wu (Corresponding Author), Fangjie Li, Na Min, Wei Li

Improved Mechanical Properties by Nanosize Tungsten–Molybdenum Carbides in Tungsten-Containing Hot Work Die Steels
– Materials Science and Engineering A (SCI), 2021

Riming Wu (Corresponding Author), Wei Li, Meng Chen, Shan Huang, Tao Hu

Dr Ronit Das | Metals and Alloys | Best Researcher Award

Dr Ronit Das | Metals and Alloys | Best Researcher Award

Dr. Ronit Das is a dynamic and forward-thinking materials engineer whose expertise lies in advanced microelectronics packaging, solder reliability, and interconnect technologies. With a Ph.D. in Industrial and Systems Engineering from Binghamton University (SUNY), his work bridges the gap between academic rigor and industrial application. Currently employed at Apple Inc. as an IC Package Integration Engineer, Dr. Das has previously contributed to leading tech companies like Intel, AMD, and Applied Materials. His academic and professional trajectory highlights a deep commitment to reliability science, microscale fatigue, and innovative materials for next-generation electronic systems.

Dr Ronit Das, Binghamton University, United States

Profile

GOOGLESCHOLAR

ORCID

SCOPUS

🎓 Education

Dr. Ronit Das holds a strong academic foundation in engineering and materials science. He earned his Ph.D. in Industrial and Systems Engineering from Binghamton University – SUNY (2020–2023), where his dissertation focused on Pb-free SnAgCu-Bi solder joints and their fatigue damage properties ⚙️📉. He completed his M.S. in the same field at Binghamton (2018–2019), researching intermetallic morphology and void formation in micro-joints 🔬📊. His academic journey began with a B.E. in Mechanical Engineering from the University of Mumbai (2011–2015), where he graduated with distinction 🎯📚. His education blends mechanics, reliability, and materials innovation 🧠🛠️.

🧑‍💼 Experience

Dr. Ronit Das brings a wealth of experience across academia and industry in advanced packaging, reliability engineering, and materials science. At Apple Inc. 🖥️📦, he drives innovative IC packaging from concept to high-volume manufacturing. Previously at Applied Materials 🧪🔬, he focused on failure analysis and PVD coatings. His doctoral research at Binghamton University 🎓🔧 involved solder joint fatigue, intermetallic evolution, and thermal reliability. With prior engineering roles in India 🌏⚙️, he also worked in product development and industrial safety. His expertise spans flip-chip, 2.5D/3D packaging, electromigration, and finite element modeling 🛠️📊, making him a well-rounded engineer and researcher.

🛠️ Technical Skills

Dr. Ronit Das possesses an exceptional technical portfolio in reliability testing 🧪, including fatigue, shear, vibration, and thermal cycling analysis 🔄. He is proficient in advanced failure analysis techniques such as SEM, EBSD, EDX, CT, and AFM 🔬🧠. His hands-on expertise includes thin-film deposition, non-destructive testing, and metallographic processing 🧱⚙️. He is skilled in simulation and data tools like MATLAB, ANSYS, JMP, and SolidWorks 📊💻. With strong competencies in DFM, FMEA, and packaging design, he consistently applies analytical thinking, problem-solving, and statistical methodologies to optimize microelectronic systems and hardware reliability 🔧📐📈.

🏆 Leadership

Dr. Ronit Das has demonstrated exceptional leadership and academic excellence throughout his career. He served as the President of the Surface Mount Technology Association (SMTA) at Binghamton University, where he led technical and professional development initiatives 📡🤝. He is also an esteemed member of Alpha Pi Mu, the Industrial Engineering Honor Society, reflecting his high academic standing 🎓📘. Additionally, Dr. Das was the Vice Chair for Graduate Student Services at ASQ World Headquarters, where he advocated for student engagement in quality and reliability sciences 🌍🧪. These recognitions showcase his dedication to leadership, innovation, and community building 💼⭐.

🎤 Conference Presentation

Dr. Ronit Das has actively presented his research on low-temperature solder joint reliability and interconnect durability at prestigious international conferences. His work at the Pan Pacific Microelectronics Symposium (2023) focused on optimizing solder fatigue life under varying stress conditions ⚙️🔩. At the GRC-SRC meetings (2020–2022), he showcased novel Pb-free soldering approaches to reduce warpage and enhance lifecycle performance 🧪📉. Additionally, he delivered key insights on the mechanical deformation and damage evolution of micro-joints at elevated temperatures 🔍🔥. These presentations underline his expertise in advanced packaging reliability, materials behavior, and interconnect engineering 💻🛠️📦.

🔬 Research Focus 

Dr. Ronit Das focuses on advancing reliability engineering and electronic packaging technologies, particularly involving low-temperature Pb-free solder systems, intermetallic morphology, and micro-joint fatigue analysis. His research integrates experimental mechanics with materials science, using techniques such as electron microscopy, thermal cycling, and finite element modeling to investigate failure mechanisms in SnAgCu, SnBi, and hybrid solder joints. He aims to enhance the durability and performance of flip-chip, 2.5D/3D architectures, and fine-pitch interconnects under harsh operational environments. His innovations are key to improving the thermal-mechanical stability, electromigration resistance, and manufacturing efficiency of next-gen electronic systems.

📚 Publications

Comparing/Optimizing Actual Solder Fatigue Life

Author: Ronit Das
Conference: 2023 Pan Pacific Microelectronics Symposium (Jan 2023)

Early Transient Creep of Single Crystal SnAgCu Solder Joints

Authors: Ronit Das; Sanoop Thekkut; Rajesh Sharma Sivasubramony; Thaer Alghoul; Atif Mahmood; Shantanu Joshi; Carlos Arroyo; Gaurav Sharma; Peter Borgesen
Journal: Journal of Materials Science: Materials in Electronics (June 2022)

Understanding and Preventing Cu–Sn Micro Joint Defects Through Design and Process Control

Authors: Ronit Das et al.
Journal: Journal of Applied Electrochemistry (Oct 2021)

Feasibility of a Low Temperature Soldering Approach

Author: Ronit Das
Conference: TechCon – Semiconductor Research Corporation (Sept 2021)

Reliability of Micro-Joints Formed by a Low Temperature Soldering Approach

Author: Ronit Das
Conference: TechCon – Semiconductor Research Corporation (Sept 2021)

Sporadic Voiding in Cu-Sn Micro-Joints: Understanding and Control

Author: Ronit Das
Conference: TechCon – Semiconductor Research Corporation (Sept 2021)

Strength and Isothermal Fatigue Resistance of SnBi/SnAgCu Joints Reflowed at Low Temperatures

Authors: Ronit Das; Manu Yadav; Thaer Alghoul et al.
Journal: Journal of Electronic Packaging (Sept 2021)

Effect of Intermetallic Morphology Evolution on Void Formation in Ni/Sn/Ni Micro Joints

Author: Ronit Das
Conference: IEEE Electronic Components and Technology Conference (ECTC) (Aug 2020)

Mr Di Feng | Metals and Alloys | Best Researcher Award

Mr Di Feng | Metals and Alloys | Best Researcher Award

🧪 Mr. Di Feng is a promising postgraduate researcher at Hainan University, specializing in soil science and environmental microbiology 🌱🔬. His research focuses on the interaction between heavy metals and soil microbial functions, addressing critical challenges in ecosystem health and sustainable land use 🌍. As first author in top-tier journals like Journal of Hazardous Materials, he has demonstrated strong analytical skills and scientific independence 📊📝. His large-scale meta-analyses and collaborations with international scientists highlight his multidisciplinary approach and rising global impact 🤝🌐. Mr. Feng’s work contributes directly to environmental remediation and agricultural resilience 🚜♻️.

Mr Di Feng, Hainan University, China

Profile

SCOPUS

ORCID

🎓 Education 

Mr. Di Feng reflect a strong interdisciplinary foundation bridging the humanities and environmental sciences. He earned his Bachelor of Arts from Guilin University (2019–2023) 🏫, where he developed critical thinking and research skills within the Faculty of Humanities 📚. He is currently pursuing postgraduate studies in Crop Science at Hainan University 🌱, focusing on soil ecology, nutrient cycling, and the effects of heavy metals on microbial function 🔬. This academic path illustrates his unique ability to integrate social insight with scientific rigor, preparing him for impactful research in environmental sustainability 🌍🧪.

💼 Employment 

Since September 2023, Mr. Di Feng has been serving as a postgraduate researcher at the School of Tropical Agriculture and Forestry, Hainan University, Haikou, China 🌴🎓. His role involves conducting advanced research on soil-plant-microbe interactions, with a particular focus on the ecotoxicological effects of heavy metals in tropical ecosystems 🧪🌾. As part of a dynamic academic environment, he engages in experimental design, data analysis, academic writing, and collaborative studies with national and international research teams 🌍📊. His position supports both his Ph.D. studies and broader contributions to environmental and agricultural sustainability 🌱🔍.

🔧 Skills and Expertise 

Mr. Di Feng span both scientific research and education. He possesses deep knowledge in the bioaccumulation of heavy metals 🧪⚠️, particularly their interaction with soil enzymes like urease and phosphatase 🌱🧫. His methodological expertise includes enzyme activity assays, soil-microbe interaction analysis, and ecological data synthesis 📊🔍. In addition to his environmental science credentials, Mr. Feng is also trained in English teaching methodology 📘🎓, showcasing versatility and communication skills. This unique blend of technical and pedagogical expertise positions him as both a skilled researcher and an effective scientific communicator 🌍🗣️.

🌾Research Focus

Mr. Di Feng’s research explores the impact of heavy metals on soil microbial function and enzymatic activity, a critical area in understanding soil health and nutrient cycling 🔄🧬. His work investigates how edaphic (soil) and climatic factors influence the toxicity of pollutants, offering new perspectives on microbial ecology and biogeochemical processes 🌾🦠. Through meta-analysis and experimental approaches, he evaluates the ecological consequences of pollution on key enzymes like urease and phosphatase ⚗️🌡️. His findings are vital for advancing environmental remediation, agricultural sustainability, and ecosystem resilience against anthropogenic stressors 🌍♻️🌾.

🌱 Scientific Contributions 

Mr. Di Feng’s research reveals how heavy metals/metalloids (HMMs) disrupt soil enzyme activity, essential for nutrient cycling ⚙️🧪. Through a meta-analysis of 1,989 data points from 145 studies, he quantified significant reductions in key enzymes like β-glucosidase, urease, and phosphatase (15–37% declines) 📉. His work links these reductions to lower microbial biomass and increased metabolic stress, while noting a surprising 82.2% increase in polyphenol oxidase due to microbial stress responses 🔄. He further identified that soil properties and climate mediate these effects, offering a predictive framework for HMMs’ ecological risks 🌍📊.

📚 Publications

Cadmium inhibits carbon and nitrogen cycling through soil microbial biomass and reduces soil nitrogen availability
✍️ Authors: Elrys, A.S.; Wen, Y.; Feng, D.; El-Mekkawy, R.M.; Kong, M.; Qin, X.; Lu, Q.; Dan, X.; Zhu, Q.; Tang, S. et al.
📚 Journal: Journal of Hazardous Materials, 2025

Edaphic factors mediate the response of nitrogen cycling and related enzymatic activities and functional genes to heavy metals: A review
✍️ Authors: Opande, T.; Kong, M.; Feng, D.; Wen, Y.; Okoth, N.; Yatoo, A.M.; Khalil, F.M.A.; Elrys, A.S.; Meng, L.; Zhang, J.
📚 Journal: Ecotoxicology and Environmental Safety, 2025

Synergistic effects of clove fruit extract and nano-silicon to enhance drought resilience and productivity of soybean through improved plant defense mechanisms
✍️ Authors: Desoky, E.-S.M.; Mahmood, M.; Feng, D.; Ahmed, A.F.; Al Masoudi, L.M.; Alahmari, A.S.; Eid, R.S.M.; Rady, M.M.; Ayyoub, A.; Taha, N.A.
📚 Journal: BMC Plant Biology, 2025

Edaphic and climatic factors control the response of nutrient-cycling enzyme activity to common heavy metals in soils
✍️ Authors: Di Feng; Lei Meng; YuHong Wen; Yves Uwiragiye; Synan AbuQamar; Nathan Okoth; Qilin Zhu; Zhipeng Wu; Yanzheng Wu; Christoph Müller et al.
📚 Journal: Journal of Hazardous Materials, 2025

Co-application of organic amendments and natural biostimulants on plants enhances wheat production and defense system under salt-alkali stress
✍️ Authors: Zaghloul, E.A.M.; Awad, E.-S.A.; Mohamed, I.R.; El-Hameed, A.M.A.; Feng, D.; Desoky, E.-S.M.; Algopishi, U.B.; Al Masoudi, L.M.; Elrys, A.S.; Mathew, B.T. et al.
📚 Journal: Scientific Reports, 2024