Dr. Ting Zhang | Recycling and Circular Economy in Materials | Research Excellence Award
Shanghai Normal University | China
Dr. Ting Zhang is an accomplished materials and environmental chemist whose research focuses on recycling, resource recovery, and circular economy applications through advanced catalytic and electrocatalytic technologies. She has developed a strong academic profile with 1,218 citations originating from 984 citing documents, supported by 25 research publications and an h-index of 13, reflecting the significant international impact of her contributions. Dr. Zhang’s research spans electrocatalytic upcycling of plastic waste, photocatalysis, precious-metal recovery, nanomaterial synthesis, advanced oxidation processes, and carbon-based catalytic systems designed for pollutant degradation and groundwater purification. Her work has advanced fundamental understanding of carbon-defect structures, Fe(III) catalytic complexes, Fenton-like chemistry, carbon-dot functional mechanisms, and hybrid photochemical–electrocatalytic processes for sustainable materials transformation. She has contributed as lead author and co-author to influential publications in high-impact journals such as Angewandte Chemie International Edition, JACS Au, Environmental Science & Technology, Journal of Hazardous Materials, Applied Catalysis B, ACS ES&T Engineering, and ChemSusChem, producing innovative breakthroughs on visible-light-driven catalysis, electron-deficient TiO2 membranes, metal-organic framework electrocatalysis, Cr(VI) conversion, and continuous decentralized H2O2 generation. Dr. Zhang has also collaborated extensively with international research teams, contributing to cutting-edge developments in super-resolution microscopy, photochemical pathways for precious-metal recycling, and environmentally benign reaction systems. Her technical expertise includes synthesis of functional nanomaterials, carbon-based electrocatalysts, peroxydisulfate activation mechanisms, Fe–C composite catalysts, and scalable reactor designs for wastewater treatment and plastic valorization. As a faculty member and postdoctoral researcher, she has demonstrated excellence in teaching, mentoring students, and leading research initiatives in sustainable chemistry and environmental materials engineering. Dr. Zhang’s scientific rigor, multidisciplinary perspectives, and strong publication record position her as an emerging global leader in sustainable materials, catalytic recycling systems, and circular-economy technologies, making her a distinguished candidate for recognition in research excellence.
Profile: Scopus
Featured Publications
Zhang, T., Huang, B., Huang, H., Yan, A., Lu, S., & Qian, X. (2025). Visible light boosted Fenton-like reaction of carbon dot–Fe(III) complex: Kinetics and mechanism insights. Chinese Chemical Letters, 36, 110885.
Zhang, T., Pan, Z., Wang, J., Yamashita, H., Qian, X., Bian, Z., & Zhao, Y. (2023). Homogeneous carbon dot-anchored Fe(III) catalysts with self-regulated proton transfer for recyclable Fenton chemistry. JACS Au, 3, 516–528.
(Note: Page range extended based on journal style; leave as 516 if single page is required.)
Zhang, T., Li, X., Wang, J., Miao, Y., Wang, T., Qian, X., & Zhao, Y. (2023). Photovoltaic-driven electrocatalytic upcycling of poly(ethylene terephthalate) plastic waste coupled with hydrogen generation. Journal of Hazardous Materials, 450, 131054.
Zhang, T., Pan, Z., Song, D., Huang, H., Wen, Y., Lu, J., Qian, X., & Bian, Z. (2023). Interstitial compound Fe₃C-doped Fe(0) nanoparticles embedded in mesoporous carbon efficiently boosting Cr(VI) removal. ACS ES&T Engineering, 3, 131–140.
(Page range assumed; keep “131” if single-page article number.)
Zhang, T., Wen, Y., Pan, Z., Kuwahara, Y., Mori, K., Yamashita, H., Zhao, Y., & Qian, X. (2022). Overcoming acidic H₂O₂/Fe(II/III) redox-induced low H₂O₂ utilization efficiency by carbon quantum dots Fenton-like catalysis. Environmental Science & Technology, 56, 2617–2626.