Dr. Mingsheng Xiahou | Structural Materials | Best Researcher Award

Dr. Mingsheng Xiahou | Structural Materials | Best Researcher Award

Dr. Mingsheng Xiahou is a visionary marine engineer and offshore wind energy innovator. A graduate of Shanghai Jiao Tong University, he currently serves as the Chief Designer and head of the R&D team at the Marine Design & Research Institute of China (MRIC). His pioneering efforts in offshore wind power equipment have helped transform China into a global leader in offshore wind construction, with his designs powering nearly 80% of the national market. His career reflects a deep commitment to sustainable energy, marine engineering, and industrial innovation.

Dr. Mingsheng Xiahou | Shanghai Jiao Tong University | China

Profile

ORCID

SCOPUS

Education

Dr. Xiahou received his formal education from Shanghai Jiao Tong University, one of China’s top engineering institutions. His educational journey laid a robust foundation in mechanical and marine design engineering, which he later transformed into practical leadership and research excellence in offshore wind systems. His academic background empowered him to lead pioneering innovations that bridge theoretical engineering with real-world environmental solutions.

Experience

Dr. Xiahou holds a leading role at MRIC, where he designs core equipment across the entire offshore wind industry chain. His career includes the creation of standardized wind turbine installation vessels, cable-laying ships, and floating wind platforms. He has guided successful launches of deep-sea equipment such as the “HaiDian YunWei 801” and “Huaxia Honghu 01,” while winning prestigious national awards in science and management innovation. His engineering solutions cover intertidal zones, nearshore, and deep-sea operations.

Contributions

Dr. Xiahou has delivered groundbreaking innovations, such as hybrid wind-hydrogen-marine ranching platforms and large-scale turbine installation systems. His designs have integrated turbine transport, foundation installation, and cable deployment into single efficient platforms, increasing operational efficiency and reducing costs. He introduced deep-sea optical cable layers, high-capacity cable storage systems, and multipurpose mother ships for floating turbine systems. These projects have set new industry benchmarks in both engineering and sustainability.

Research Focus 

Dr. Xiahou’s current research focus centers on cost-effective and sustainable offshore wind infrastructure. His interests include floating wind turbine systems, digital simulation, and multi-functional marine platforms for renewable energy generation and ocean resource management. By enhancing project efficiency, reducing costs, and driving green innovation, his work aligns with both national energy strategies and global climate goals.

Publications

Integrated Assessment Methodology for Jack-Up Stability: Centrifuge Test of Entire Four-Legged Model for WTIVs
Authors: Mingsheng Xiahou, Zhiyuan Wei, Yilin Wang, Deqing Yang, Jian Chi, Shuxiang Liu
Journal: Applied Sciences
Theme: Offshore structural stability, centrifuge modeling, jack-up platforms for wind turbine installation vessels (WTIVs)

Investigation on Calm Water Resistance of Wind Turbine Installation Vessels with a Type of T-BOW
Authors: Mingsheng Xiahou, Deqing Yang, Hengxu Liu, Yuanhe Shi
Journal: Journal of Marine Science and Engineering
Theme: Hydrodynamic performance analysis, calm water resistance, T-BOW hull design for marine vessels

Conclusion

Dr. Mingsheng Xiahou is an outstanding candidate for the Best Researcher Award, with a career that exemplifies innovation-driven impact at the intersection of marine engineering, renewable energy, and national infrastructure development. His leadership in offshore wind technology, vessel design, and integrated energy systems positions him as a transformative contributor to the field. With enhanced academic dissemination and international engagement, his influence can extend even further on the global stage.

Prof. Dr Lei Wang | Structural Materials | Best Researcher Award

Prof. Dr Lei Wang | Structural Materials | Best Researcher Award

Prof. Dr. Lei Wang is a distinguished expert in materials science and engineering, currently serving as Director of the Institute of Advanced Material Technology at Northeastern University, China 🏛️🔬. He earned his Ph.D. from Toyohashi University of Technology, Japan 🇯🇵 and has over 40 years of teaching and research experience spanning China and Japan 🌏📚. His research focuses on microstructural control, strengthening mechanisms, and high-temperature materials ⚙️🔥. With over 420 publications and 12 books, Prof. Wang is a recognized leader in advanced materials innovation, scientific mentorship, and international academic collaboration 🧪📖🌍.

Prof. Dr Lei Wang, Northeastern University, China

Profile

SCOPUS

Education 🎓

Prof. Dr. Lei Wang holds a distinguished academic background in Materials Science and Engineering 🎓🔬. He earned his Ph.D. in Materials System Engineering from Toyohashi University of Technology, Japan (1994–1997) 🇯🇵, where he specialized in advanced materials research. Prior to that, he completed his M.S. (1983–1986) and B.S. (1978–1982) at Northeastern University in Shenyang, China 🇨🇳. His academic training laid a robust foundation for his work on high-performance materials, microstructural control, and engineering mechanics, making him a global expert in his field 🧪🏗️.

Experience 🏛️

Prof. Dr. Lei Wang has over four decades of experience in materials science and engineering 🧪🎓. Since 2001, he has served as a Distinguished Professor at Northeastern University, China, leading research in metal and high-temperature materials 🔩🔥. He has held academic positions in Japan at Toyohashi University, Tottori University, and Tohoku University, supervising numerous Ph.D. and Master’s students 🧑‍🎓📘. His teaching and research span fracture mechanics, ceramic composites, and biomaterials. With a rich international background and long-standing academic leadership, he has significantly advanced both theoretical knowledge and practical applications in materials engineering across Asia and beyond 🌏🏛️.

Scientific Research 🧪

Prof. Dr. Lei Wang focuses his research on the strengthening and toughening of advanced materials through precise microstructural control 🔬🧱. He investigates the mechanical behavior of materials under dynamic loading and extreme environmental conditions, which is crucial for aerospace, automotive, and energy applications ⚙️🔥. His work spans metallic alloys, ceramics, and composites, contributing significantly to materials design and performance optimization. With over 420 peer-reviewed papers and 12 published books, he has made a lasting impact on the field of materials science and engineering 📚🧪. His innovations support the development of next-generation high-performance materials 🌍🔧.

Leadership 🌐

Prof. Dr. Lei Wang plays a prominent leadership role in the materials science community both nationally and internationally 🌐. He serves as Vice President of the Heat Treatment Society of China and is an Executive Committee Member of the High Temperature Materials Branch under the Chinese Society for Metals and the Materials Branch of the Chinese Society of Mechanical Engineering 🏛️⚙️. He also leads as President of the Heat Treatment Society of Liaoning Province and was named a Taishan Industry Leading Leader in 2018 🏅. Additionally, he is a Visiting Professor at Tohoku University, Japan 🇯🇵📘.

Research Focus 🔬

Prof. Dr. Lei Wang focuses on the design, strengthening, and microstructural evolution of advanced metallic materials and superalloys 🔩🔥. His work spans corrosion behavior in sulfur-containing environments 🧪, electromagnetic casting of high-performance alloys ⚡, hot deformation processes, and microstructure-property relationships under various thermal and mechanical conditions 🛠️🌡️. He also investigates crystal structure engineering, including recrystallization under electric pulse treatment, and the dielectric properties of doped ceramics 🔬🔋. His studies contribute to developing high-performance materials for aerospace, energy, and structural applications, ensuring both durability and functional optimization in extreme environments 🚀🏗️.

Publications 📘

Influence of hot deformation parameters on the microstructure evolution of low-expansion GH2909 superalloy
Authors: P. Zhang, C. Lan, L. Wang, H. Zhang, H. Zhou
Journal: Materials Characterization 🛠️🔍

Effects of Solution Temperature on the Microstructural Evolution and Mechanical Properties of the GH4706 Alloy
Authors: C. Wang, L. Wang, S. Huang, H. Qin, B. Zhang
Journal: JOM 📘🔬

Dendrite Fragmentation Behavior and Mechanism during the Solidification of GH4742 Superalloy under Permanent Magnetic Stirring
Authors: J. Wang, L. Wang, X. Song, Y. Liu
Journal: Metals and Materials International ⚙️🔩

Effect of trivalent acceptor ions size on the dielectric properties of donor-acceptor co-doped TiO2 single crystals
Authors: L. Wang, J. Li, M. Xu, X. Sun
Journal: Ceramics International 🏺🔋

Preparation and properties of Fe−Si−B−Cr−C amorphous alloy powders by air-water combination atomization with different particle sizes
Authors: S. Lü, C. Kuang, L. Wang, J. Zhang, R. Cao
Journal: Fenmo Yejin Jishu/Powder Metallurgy Technology ⚗️🔬

An Oriented Recrystallization Nucleation Mechanism of a Cold-Rolled Pure Ti with Electric-Pulse Treatment
Authors: Q. Shi, L. Wang, X. Song, Y. Liu
Journal: Materials 🧪⚡

Corrosion mechanism of K411 superalloy in sulfur-containing environment: sulfidation promoting internal nitridation
Authors: R. Yu, Y. Wang, L. Wang, X. Jiang, J. Dong
Journal: Corrosion Reviews 🧳⚙️

Prof Xiang Chen | Computational Materials Science | Best Researcher Award

Prof Xiang Chen | Computational Materials Science | Best Researcher Award

Prof. Xiang Chen is a leading expert in solid mechanics and materials science, currently serving as a Professor at Chongqing University of Posts and Telecommunications, China 🏛️. He holds a Ph.D. in Solid Mechanics 🎓, specializing in smart materials, shape memory alloys, and high-entropy alloys ⚙️. His research focuses on mechanical behavior, tribology, nanoindentation, and molecular dynamics simulations 🔬. With 10+ high-impact journal publications, he has contributed significantly to material characterization and structural analysis 📚. His expertise in finite element analysis and advanced alloys makes him a key innovator in mechanical and materials engineering 🏆.

Prof Xiang Chen, Chongqing University of Posts and Telecommunications, China

Profile

SCOPUS

Education 🎓

Prof. Xiang Chen pursued his higher education at Chongqing University, specializing in engineering mechanics and solid mechanics 🏛️. He earned his Bachelor’s degree (2006-2010) in Engineering Mechanics, focusing on smart materials ⚙️ under the guidance of Prof. Xianghe Peng 👨‍🏫. He continued his studies with a Master’s degree (2010-2011) in Solid Mechanics, deepening his research in smart materials 🔬. Prof. Chen then completed his Ph.D. (2011-2015) in Solid Mechanics, further advancing his expertise in mechanical behavior and material characterization 📄. His strong academic foundation has made him a leader in smart materials and structural engineering 🏆.

Experience 🏛️

Prof. Xiang Chen has built a distinguished career at Chongqing University of Posts and Telecommunications, contributing significantly to materials science and solid mechanics ⚙️. He began as a Lecturer (2015-2018) 📖, focusing on teaching and research. He was then promoted to Associate Professor (2018-2023), where he led cutting-edge research in smart materials and high-entropy alloys 🔬. In 2023, he became a full Professor, further expanding his influence in mechanical behavior and structural engineering 📚. His academic leadership and innovative contributions have positioned him as a trailblazer in advanced materials research 🏆✨.

Skills 🛠️

Prof. Xiang Chen is a leading expert in smart materials and solid mechanics, with specialized knowledge in shape memory alloys and high-entropy alloys ⚙️. His proficiency in nanoindentation and tribology enables him to analyze material wear and mechanical behavior precisely 🔍. He utilizes molecular dynamics simulations to explore atomic-scale interactions 🖥️ and employs finite element analysis for optimizing structural performance 📊. His groundbreaking research on microstructural behavior under mechanical and thermal conditions has advanced material characterization and engineering applications 📚. Prof. Chen’s expertise plays a vital role in developing next-generation materials for industrial and scientific use 🏆✨.

Research Focus 🔬

Prof. Xiang Chen’s research primarily focuses on solid mechanics, smart materials, and high-entropy alloys ⚙️. He explores the mechanical behavior of NiTi shape memory alloys, investigating their tribological properties, temperature effects, and indentation mechanics 🔍. His work also includes shock compression studies on monocrystalline NiTi alloys and heat treatment effects on CuZr composites 🔥. He applies molecular dynamics simulations and finite element analysis to predict material performance 🖥️. Additionally, Prof. Chen develops advanced composite materials for applications in biomedical stents and aerospace structures 🚀🏥. His groundbreaking studies enhance structural durability and material characterization 🏆✨.

Publications 📚

Effects of heat treatment parameters and grain sizes on mechanical response of amorphous/crystalline CuZr composites

    • Authors: Yin, M., Duan, M., Fu, T., Chen, X., Peng, X.
    • Journal: Mechanics of Materials 🔬📑

Structural Design of Negative Poisson’s Ratio NiTinol Stent and Its Performance in Vascular Support

    • Authors: Chen, X., Xiong, L., Fu, F., Zhao, Y., Kang, X.
    • Journal: Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering 🛠️

Temperature dependence of tribological properties in NiTi shape memory alloy: A nanoscratching study

    • Authors: Chen, X., Guo, A., Wang, J., Lu, S., Fu, T.
    • Journal: Tribology International 🔧⚙️

Orientation-dependent multi-spall performance of monocrystalline NiTi alloys under shock compression

    • Authors: Chen, X., Wu, X., Yang, X., Pei, X., Wang, F.
    • Journal: Materials Today Communications 🧪📄

A multiscale mesh generation method for textile composite

    • Authors: Ma, Y., Chen, A., Deng, C., Lu, S., Zeng, X.
    • Journal: Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica ✈️🌐

Effect of Material Parameters on the Indentation Mechanical Behavior of Superelastic NiTi Shape Memory Alloy

    • Authors: Chen, X., Jiang, W., Lu, S., Fu, T., Peng, X.
    • Journal: Journal of Materials Engineering and Performance 🔬📘

Deformation behavior and yield strength prediction of [112] oriented NbMoTaW refractory high entropy alloy nanowires

    • Authors: Tian, T., Fu, T., Duan, M., Chen, X., Peng, X.
    • Journal: CrystEngComm 🧪📖