Assoc. Prof. Dr ESAYAS FTWI | Structural Materials | Best Researcher Award

Assoc. Prof. Dr ESAYAS FTWI | Structural Materials | Best Researcher Award

Assoc. Prof. Dr ESAYAS FTWI, Addis Ababa University, Ethiopia

Assoc. Prof. Dr. Esayas Ftwi is a distinguished researcher and educator in concrete engineering, holding a Ph.D. from the University of Tokyo. His expertise spans structural performance evaluation, constitutive modeling, and sustainable construction technologies. Dr. Ftwi has published extensively in top journals, earning accolades like the Outstanding Research Paper of the Year from the Japan Concrete Institute. As a leader, he has directed major projects, including the Grand Ethiopian Renaissance Dam, and contributed to building codes and sustainable engineering policies. His dedication to advancing concrete technologies and impactful research makes him a global leader in civil engineering. 🏗️📚✨

Publication Profile

Scopus

Academic and Professional Background

Assoc. Prof. Dr. Esayas Ftwi earned his Ph.D. in Concrete Engineering from the University of Tokyo, specializing in structural performance evaluation of reinforced concrete. He also holds a Master’s degree in constitutive modeling for cracked concrete and a Bachelor’s degree in Civil Engineering. With extensive academic and professional experience in Ethiopia, Japan, and the United States, Dr. Ftwi has developed expertise in concrete materials, structural design, and engineering education. His global exposure and multidisciplinary knowledge position him as a leading figure in civil engineering and sustainable construction. 🏗️📚✨

Award🌍🏆

Assoc. Prof. Dr. Esayas Ftwi is a globally recognized researcher in concrete engineering, earning numerous prestigious awards throughout his career. These include the Outstanding Journal Paper Awards (2008, 2011) from the Journal of Advanced Concrete Technology, the Best Research Paper Award from the Japan Concrete Institute (2008), and the Outstanding Research Award from Addis Ababa University (2013). His innovative work with students on sustainable concrete technologies, such as rice husk cement replacement and voided slab design, has also garnered recognition. These accolades highlight his significant contributions to advancing structural engineering and sustainable practices. 🏗️📚✨

Research Focus Area ⚛️🔬

Assoc. Prof. Dr. Esayas Ftwi’s research primarily focuses on reinforced concrete structures, advanced concrete materials, and structural performance analysis. His studies explore the effects of torsion on reinforced concrete beams, the role of metakaolin in recycled aggregate concrete, and the properties of Ethiopian kaolin clays in metakaolin production. Dr. Ftwi’s innovative work includes multi-scale simulations of shear-critical beams, nonlinear gel migration in cracked concrete, and drying shrinkage modeling. With numerous publications in high-impact journals like Journal of Advanced Concrete Technology, his contributions address critical challenges in sustainable and resilient construction. 🌍📚⚡

Publication Top Notes📄✨

Nonlinear gel migration in cracked concrete and broken symmetry of corrosion profiles

Effect of concrete cover on the pure torsional behavior of reinforced concrete beams

Multi-scale based simulation of shear critical reinforced concrete beams subjected to drying

Simulation of early-age cracking due to drying shrinkage based on a multi-scale constitutive model

Investigation of the cause of failure of the Omo River Bridge

Spalling of concrete cover due to torsion: Examination of advanced theoretical models

 

 

Mr Zhaoheng Ling | Materials Science | Best Researcher Award

Mr Zhaoheng Ling | Materials Science | Best Researcher Award

Mr Zhaoheng Ling, King Abdullah University of Science and Technology, Saudi Arabia

Mr. Zhaoheng Ling, a Ph.D. candidate at King Abdullah University of Science and Technology, specializes in nanomaterials and solar cell technologies. His research has advanced organic photovoltaics (OPVs) through bulk heterojunction modification, interface engineering, and molecular doping, achieving breakthroughs like 20.5% efficiency in OPVs. With publications in high-impact journals such as ACS Energy Letters and Advanced Materials, Mr. Ling has made significant strides in sustainable energy solutions. He actively engages in global conferences and workshops, showcasing his expertise in molecular doping, crystal growth, and materials characterization. His work is shaping the future of renewable energy. 🧪☀️📚

Publication Profile

GOOGLE SCHOLAR

ORCID

SCOPUS

Educational Qualifications 🎓

Mr. Zhaoheng Ling is pursuing a Ph.D. in Material Science and Engineering at King Abdullah University of Science and Technology (2021–present), achieving a GPA of 3.75/4. His research focuses on advanced nanomaterials and renewable energy solutions. He earned his M.S. in Materials Science from the University of Science and Technology of China (2014–2017), where he specialized in nanoscience and graduated with a GPA of 80.5/100. Mr. Ling holds a B.S. in Materials Science from HeFei University (2009–2013), graduating with a GPA of 79.5/100. His strong academic background underpins his innovative contributions to materials science. 🎓🔬🌍

Experience and Contributions 💼

Mr. Zhaoheng Ling possesses extensive expertise in molecular doping of organic semiconductors for photovoltaic applications, enhancing solar cell efficiency and stability. He is skilled in advanced experimental techniques such as J-V measurement, external quantum efficiency (EQE), UV-Vis transmission, photoluminescence, SEM, AFM, XRD, and atom probe tomography. His proficiency extends to crystal growth and thin-film deposition using molecular-beam epitaxy (MBE), thermal evaporation, and e-beam evaporation. Additionally, he is adept at data modeling and analysis with tools like Microsoft Office and ORIGIN. His teaching experience includes courses on the Physics of Beam-Solid Interactions and Organic Semiconductors and Applications at GEC Academy. 🧪🔬📊

Conference and Workshop

Mr. Zhaoheng Ling actively participates in international conferences and workshops to share his research and advance the field of photovoltaics. He delivered an oral presentation at the Asia-Pacific International Conference on Perovskite, Organic Photovoltaics, and Optoelectronics (2024, Japan) and presented posters at the Perovskite and Organic Photovoltaics Conference (2024, China) and the International Conference on Hybrid and Organic Photovoltaics (2023, UK). He has also attended notable workshops, including Printable Thin-Film Photovoltaics & Applications (2024, Germany), Photovoltaic Innovation for Saudi Vision 2030 (2024, KAUST), and Sustainable Energy Materials for a Low Carbon Future (2023, KAUST). 🌍🔬📊.

Research Focus Area 🌱🧬

Mr. Zhaoheng Ling’s research primarily centers on organic photovoltaics (OPVs), perovskite solar cells, and nanomaterials for renewable energy applications. His work involves enhancing solar cell efficiency through innovative approaches like bulk heterojunction modification, molecular doping, and interlayer engineering. Notable achievements include achieving over 20% efficiency in OPVs and developing tandem photovoltaic systems with 23.6% efficiency. His studies explore the stability, passivation, and optoelectronic properties of materials, addressing critical challenges in sustainable energy technologies. With high-impact publications in journals like ACS Energy Letters and Advanced Materials, his contributions are shaping the future of clean energy. 🧪☀️📚

Awards 🏆

Mr. Zhaoheng Ling was honored with the prestigious Academic Scholarship from the Nano Science and Technology Institute at the University of Science and Technology of China during 2014–2015. This recognition highlights his academic excellence and dedication to advancing the field of nanoscience. The award underscores his ability to excel in rigorous scientific research and his commitment to contributing innovative solutions to materials science and nanotechnology. This achievement reflects Mr. Ling’s determination to push the boundaries of scientific knowledge. 🎓🏆🔬

Publication Top Notes📄✨

High-efficiency silicon/organic heterojunction solar cells with improved junction quality and interface passivation

On the Conformation of Dimeric Acceptors and Their Polymer Solar Cells with Efficiency over 18%

Excellent passivation of silicon surfaces by thin films of electron-beam-processed titanium dioxide

Over 19% efficiency in ternary organic solar cells enabled by n-type dopants

Optoelectronic evaluation and loss analysis of PEDOT: PSS/Si hybrid heterojunction solar cells

TiO2 Films from the Low‐Temperature Oxidation of Ti as Passivating‐Contact Layers for Si Heterojunction Solar Cells

Monolithic Perovskite–Perovskite–Organic Triple-Junction Solar Cells with a Voltage Output Exceeding 3 V

Stability and passivation of 2D group VA elemental materials: black phosphorus and beyond