Mr. Fujun Niu | Materials Characterization Techniques | Best Researcher Award

Mr. Fujun Niu | Materials Characterization Techniques | Best Researcher Award

Shanghai Normal University | China

Mr. Fujun Niu is a distinguished scholar and global authority in the field of permafrost science, geotechnical engineering, and cold region environmental studies. He currently serves as a Professor at the School of Environment and Geographic Sciences, Shanghai Normal University, and as Vice President of the International Permafrost Association. With a strong academic background including a Ph.D. in Geological Engineering from Xi’an Technology College, Mr. Niu has dedicated his career to advancing the understanding of permafrost disasters, frozen soil mechanics, and engineering applications in extreme environments. His remarkable research output includes over 375 scholarly publications, of which more than 100 are indexed in SCI and 50 in EI, earning him an impressive 9,409 citations from 5,270 documents and an h-index of 50. Mr. Niu has successfully led over 30 major national and international projects, including the National Natural Science Foundation of China, the Ministry of Science and Technology’s Support Program, and the Second Scientific Expedition to the Qinghai-Tibet Plateau. His work has significantly contributed to infrastructure resilience and environmental sustainability in cold regions, particularly through pioneering studies on the Qinghai-Tibet Railway and permafrost slope stability. A mentor to numerous doctoral and postdoctoral researchers, Mr. Niu’s leadership has shaped the next generation of geoscientists. His contributions have been recognized with multiple prestigious awards, including the National Science and Technology Progress First Prize, the Outstanding Scientific Achievement Award from the Chinese Academy of Sciences, and provincial honors for innovation and excellence. As an editorial board member of several leading journals and a recognized thought leader in cryospheric science, Mr. Niu continues to make profound contributions to understanding and mitigating the impacts of climate change in cold regions.

Profile: Scopus

Featured Publications

Burn, C. R., Bartsch, A., Chakraborty, E., Niu, F., et al. (2025). Developments in permafrost science and engineering in response to climate warming in circumpolar and high mountain regions, 2019–2024. Permafrost and Periglacial Processes, 36(2), 167–188.

Huang, Y., Niu, F.*, He, P., et al. (2024). Effectiveness evaluation of cooling measures for express highway construction in permafrost regions based on GPR and ERT. Cold Regions Science and Technology, 228, 104339.

Xuling, R., Niu, F.*, & Qihao, Y., et al. (2024). Research progress of soil thermal conductivity and its predictive models. Cold Regions Science and Technology, 217, 104027.

He, J., Niu, F.*, Jiang, H., et al. (2023). Fractional viscoelastic-plastic constitutive model for frozen soil based on microcosmic damage mechanism. Mechanics of Materials, 177, 104545.

Ju, X., Niu, F.*, Liu, M., & Luo, J. (2023). Evolution characteristics of freeze–thaw-induced sandstone damage under water immersion conditions in Changdu, Tibet, China. Cold Regions Science and Technology, 104013.

Jiang, H., Wang, E., Niu, F.*, et al. (2022). Experimental investigation on performance degradation of insulation materials induced by freeze–thaw cycles and its applications. Construction and Building Materials, 350, 128844.

Prof Laiyuan Wang | Materials Characterization Techniques | Best Researcher Award

Prof Laiyuan Wang | Materials Characterization Techniques | Best Researcher Award

Prof. Laiyuan Wang is a leading researcher in nanoelectronics, optoelectronic materials, and device physics 🎓. He is an Associate Professor at Sun Yat-Sen University, specializing in van der Waals materials, memristors, and neuromorphic computing ⚛️🧠. He completed his Ph.D. in Optoelectronic Materials and Devices in 2017 and conducted postdoctoral research at UCLA. His groundbreaking studies on phase transition mechanisms, molecular intercalation, and high-resolution nanodevice characterization have been published in Nature, Science, Advanced Materials, and more 📚. With global collaborations, prestigious awards, and pioneering contributions to energy-efficient computing and flexible electronics, he is a strong candidate for the Best Researcher Award 🏆🔬.

Prof Laiyuan Wang, Sun Yat-Sen University, China

Profile

Academic and professional Background 🎓

Prof. Laiyuan Wang is an Associate Professor at Sun Yat-Sen University (since 2023), specializing in nanoelectronics and optoelectronic materials . He completed his postdoctoral research at UCLA with Prof. Xiangfeng Duan, focusing on nanodevices and in-situ characterization. He earned his Ph.D. in Optoelectronic Materials and Devices in 2017 under Academician Wei Huang . His research on phase transitions, atomic-scale TEM, and molecular intercalation has been published in Nature, Science, Nano Letters, and Advanced Materials . He has received prestigious awards, including the RSC Stephanie L. Kwolek Prize and China’s National Overseas High-Level Young Talent Award .

Research & Innovations 🚀

Prof. Laiyuan Wang is a distinguished researcher specializing in nanoelectronic devices, memristors, and two-dimensional atomic crystals. His ongoing project, “Ideal Interface Integration and Performance of Nano Electronic Devices”, under the National Overseas High-Level Young Talent Program in China, focuses on optimizing nanoelectronics for next-generation computing. His completed project, “High-Performance Memristors Based on Metalloporphyrin-Regulated Ionic Migration” (National Natural Science Youth Foundation, 61904150), has revolutionized neuromorphic computing. Additionally, his “Molecular Intercalation Approach to Superlattices and Bulk Monolayer Materials (U.S. DOE-BES Grant DE-SC0018828) has advanced 2D material engineering. His research bridges nanotechnology, artificial intelligence, and quantum computing. 🚀💡

Research Focus 🔬

Prof. Laiyuan Wang is a leading researcher in micro-nano optoelectronic devices, in-situ characterization techniques, and novel semiconductor materials. His work explores high-performance transistors, neuromorphic devices, and spintronic systems for next-generation computing. He specializes in microscopic in-situ device characterization using Cs-STEM, 4D-STEM, STM, and Raman spectroscopy, enabling precise analysis of nanoscale materials. Additionally, his research advances semiconductor fabrication, processing, and modification for improved optoelectronic performance. His expertise bridges quantum computing, AI-driven materials, and advanced semiconductor technologies, contributing to the future of high-speed, energy-efficient electronics. 🚀📡💡

Publications 📚

📖 “Highly Stretchable van der Waals Thin Films for Adaptable and Breathable Electronic Membranes”
👥 Z. Yan, D. Xu, Z. Lin, P. Wang, B. Cao, H. Ren, F. Song, C. Wan, L. Wang, et al.
📜 Published in: Science (2022) 🌍

📖 “Signal Filtering Enabled by Spike Voltage-Dependent Plasticity in Metalloporphyrin-Based Memristors”
👥 Z. Wang, L. Wang, Y. Wu, L. Bian, M. Nagai, R. Jv, L. Xie, H. Ling, Q. Li, et al.
📜 Published in: Advanced Materials (2021) 🧠💡

📖 “Two-Dimensional Conjugated Microporous Polymer Films: Fabrication Strategies and Potential Applications”
👥 Z. Liu, Y. Yin, M. Eginligil, L. Wang, J. Liu, W. Huang
📜 Published in: Polymer Chemistry (2021) 🏗️⚛️

📖 “Interlayer Reconstruction Phase Transition in van der Waals Materials”
👥 J. Zhang, L. Wang, J. Lü, Z. Wang, H. Wu, G. Zhu, N. Wang, F. Xue, X. Zeng, et al.
📜 Published in: Nature Materials (2020) 🔬🌱

📖 “Programmable Devices Based on Reversible Solid-State Doping of Two-Dimensional Semiconductors with Superionic Silver Iodide”
👥 S.J. Lee, Z. Lin, J. Huang, C.S. Choi, P. Chen, Y. Liu, J. Guo, C. Jia, Y. Wang, et al.
📜 Published in: Nature Electronics (2020) 💾⚡

His research revolutionizes 2D materials, memristors, and nanoelectronics, contributing to neuromorphic computing, stretchable electronics, and phase transition studies 🚀💡.