Featured Publications
– Korean Journal of Metals and Materials, Oct 2025
– Metals and Materials International, Oct 2023
Citations
Documents
h-index
View Scopus Profile View Orcid Profile View Google Scholar Profile
Mr. Pierre D’Arras is a distinguished industrial leader and innovator recognized for his outstanding contributions to sustainability in material science, particularly in the field of natural fibers and eco-responsible materials. He serves as the Chief Executive Officer of Van Robaeys Frères, a major industrial group specializing in the processing, refining, and valorization of flax fibers, where he oversees integrated activities spanning agriculture, material transformation, logistics, and industrial operations. With a strong engineering background from Arts et Métiers (ICAM Lille), Mr. D’Arras combines technical expertise with strategic vision to advance sustainable material solutions rooted in renewable and bio-based resources. His professional journey reflects deep engagement in material processing, production optimization, and research-driven innovation, with prior experience in engineering management, production supervision, and consultancy focused on natural fiber innovation. Through his leadership, flax has been positioned as a high-performance, low-impact alternative to conventional materials, supporting applications in textiles, composites, construction, and industrial sectors aligned with circular economy principles. Mr. D’Arras has played a key role in developing innovative, value-added products derived from natural fibers, reinforcing the link between sustainable agriculture and advanced material science. Beyond industry, he actively contributes to institutional and professional bodies, serving in advisory, judicial, and consultative roles related to industry, social responsibility, and economic governance. His engagement in professional networks and continuous leadership development initiatives reflects his commitment to responsible industrial growth and innovation. By bridging engineering, sustainability, and material science, Mr. D’Arras has significantly advanced the industrial adoption of environmentally friendly materials. His impact on sustainable material development, industrial transformation, and leadership excellence makes him a highly deserving recipient of the Research Excellence Award.
Citations
Documents
h-index
Adapting Flax Production to Climate Change: Can a Spring Variety Be Grown in Winter?
Fibers, December 2025 ·
Composites (Open Access), November 2025 ·
Flax Fibre Bundle: A Remarkable Multi-Scale Unidirectional Composite Material
Composites, April 2025 ·
Analysis of the Tensile Behaviour of Flax Fibre Bundles as a Function of the Loaded Volume
Composites, March 2025 ·
Industrial Crops and Products, November 2024 ·
Dr. Md Panna Ali is a distinguished researcher whose interdisciplinary expertise bridges materials science, advanced manufacturing technologies, and applied engineering innovation, with growing contributions aligned to additive manufacturing and sustainable fabrication systems. His work emphasizes the integration of material functionality, process optimization, and technology-driven solutions to address real-world challenges in production efficiency, environmental sustainability, and system resilience. Dr. Ali has demonstrated strong leadership in managing complex research initiatives, coordinating multidisciplinary teams, and translating scientific knowledge into practical applications. His research approach combines material behavior analysis, nanostructured material utilization, and technology-enabled design strategies that support emerging manufacturing paradigms such as additive manufacturing and digital fabrication. Through extensive collaboration with international research institutions, he has contributed to the development of innovative material-based solutions, including functional nanomaterials, bio-derived composites, and process-driven optimization frameworks relevant to advanced manufacturing systems. In addition to his research achievements, Dr. Ali has extensive experience in project management, stakeholder engagement, and technology transfer, enabling effective deployment of research outcomes into applied and policy-driven contexts. He has authored a substantial body of scientific publications and actively contributes to professional communities through peer review, training, and scientific communication. His expertise in laboratory-to-field translation, system-level problem solving, and interdisciplinary innovation reflects a strong commitment to advancing next-generation manufacturing solutions. Through sustained research excellence, leadership, and innovation, Dr. Md Panna Ali exemplifies the qualities of a forward-looking scientist and is a deserving recipient of the Best Researcher Award in Additive Manufacturing.
Mr. Sumit Gahletia is an ambitious early-career researcher specializing in additive manufacturing, 3D scanning, and advanced materials, recognized for his rapidly growing academic influence and practical contributions to biomedical and orthodontic engineering. His research portfolio reflects 9 scientific documents, an h-index of 6, and 88 citations recorded across 70 citing documents, demonstrating the strong scholarly reception of his emerging work in material optimization, 3D printing mechanics, scanning metrology, and patient-specific medical device fabrication. Mr. Gahletia’s ongoing PhD research focuses on the design and performance evaluation of orthodontic retainers fabricated through precision 3D scanning and high-resolution resin printing, where he examines scanning parameters, printing conditions, mechanical behavior, and dimensional accuracy to develop clinically reliable and personalized dental solutions. He has published impactful journal articles in areas such as fused filament fabrication, resin-based printing systems, metrological assessment of dental models, and optimization of biocompatible materials, along with multiple conference contributions showcasing novel approaches to sustainable manufacturing, polymer-matrix composites, and digital dentistry. His earlier work includes the mechanical evaluation of fiber-reinforced Onyx composites using FDM, further highlighting his versatility across additive-manufacturing platforms. In addition to his research excellence, Mr. Gahletia has established a strong presence in academic and professional communities, serving in various leadership and organizational roles across technical societies, innovation platforms, scouting organizations, and national committees. He has also participated in numerous international conferences, workshops, and scientific training programs, strengthening his exposure to global advancements in engineering and materials science. With practical industrial experience, proficiency in advanced design software, and a strong commitment to interdisciplinary innovation, Mr. Gahletia continues to contribute meaningfully to the evolving landscape of 3D printing and biomedical manufacturing, positioning himself as a promising scholar making impactful strides in research, technology integration, and next-generation material applications.
Gahletia, S., & Garg, R. K. (2025). Dismantling barriers in integrating patient-centred care with additive manufacturing to assess the fit of orthodontic retainers for futuristic preventative healthcare. Progress in Additive Manufacturing.
Gahletia, S., Kaushik, A., & Garg, R. K. (2024). Analysis of the surface roughness of 3D-printed occlusal splints fabricated using biocompatible resins. Journal of Emerging Science and Engineering.
Sharma, P., Gahletia, S., & Bhardwaj, K. (2023). Ameliorating surface roughness and tensile strength of ASA fabricated parts by analyzing significant FDM printing parameters using response surface methodology. Journal of Polymer & Composites.
Kaushik, A., Kumar, P., Gahletia, S., Garg, R. K., Kumar, A., Yadav, M., Giri, J., & Chhabra, D. (2023). Optimization of dual extrusion fused filament fabrication process parameters for 3D-printed nylon-reinforced composites: Pathway to mobile and transportation revolution. SAE International Journal of Materials and Manufacturing.
Kaushik, A., Punia, U., Gahletia, S., Garg, R. K., & Chhabra, D. (2023). Identification and overcoming key challenges in the 3D printing revolution. In Advances in Additive Manufacturing (Chapter 5). CRC Press.
Prof. Dr. Debasis Sarkar is a distinguished academic and research leader in Civil Engineering, widely recognized for his expertise in Construction Engineering, Project Management, Infrastructure Development, and Risk Management for large-scale transportation and metro rail systems. He has established a prolific academic and professional career as a senior faculty member in Civil Engineering, contributing significantly to teaching, research, consultancy, and academic leadership at renowned institutions. His research has achieved substantial scholarly visibility, with 490 citations across 396 documents, an h-index of 15, and 56 published documents, reflecting the strong impact and reliability of his scientific contributions worldwide. Over his career, he has produced high-quality research outputs in international and national journals, conference proceedings, and industry reports, with multiple articles published in reputable Scopus-indexed journals and several publications earning Best Paper Awards at prestigious global conferences. Prof. Dr. Sarkar’s research spans areas including risk management for metro rail projects, applications of Building Information Modeling (BIM) for infrastructure optimization, lean project delivery systems, and innovative construction technologies for sustainable urban development. Alongside his research achievements, he has supervised numerous Master’s and PhD scholars and guided a large number of dissertations in Construction and Infrastructure Engineering. His extensive consultancy portfolio includes project management assignments for metro rail systems, bus rapid transit corridors, sustainable transportation initiatives, and industrial and real-estate infrastructure projects. As an academic administrator, he has played a vital role in curriculum development, training coordination, industry linkage, and program leadership while contributing as a visiting expert to national and international institutions. Prof. Dr. Debasis Sarkar remains dedicated to advancing engineering research, innovation in infrastructure systems, and professional excellence, and he continues to be an influential contributor to the development of modern engineering education and practice.
Assessing Road Safety Challenges in Rapidly Urbanizing Cities: A Fuzzy Logic and Factor Comparison Method Approach. (2026). Journal of Legal Affairs and Dispute Resolution in Engineering and Construction.
Evaluation of key performance indicators affecting effective implementation of integrated BIM-blockchain technology through fuzzy AHP-ANP tool in bullet train project in India. (2025). Innovative Infrastructure Solutions.
Predicting the success possibility of Internet of Things and cloud computing implementation in the construction sector: A case study from Gujarat, India. (2025). Asian Journal of Civil Engineering.
Risk-integrated scheduling for commercial building construction: A BIM and Monte Carlo simulation approach. (2025). Asian Journal of Civil Engineering.
Predictive Analysis of Carbon Dioxide Emissions in Heterogeneous Urban Traffic using Neural Networks. (2025). Emission Control Science and Technology.
Dr. Sahar Kafashi is an accomplished mining engineer, researcher, and industry professional whose expertise spans mineral processing, drilling and blasting engineering, hydrometallurgy, and advanced techniques for environmentally sustainable mineral extraction. She currently contributes to research and operational excellence through her engineering role within the global mining sector while simultaneously advancing academic research in collaboration with Murdoch University, CSIRO, and industry partners. Dr. Kafashi’s work focuses on innovative in-situ recovery technologies for metals from impermeable hard rocks, exploring advanced crack-inducing techniques such as microwave radiation, high-voltage pulse stimulation, and cryogenic fluid treatment to enhance rock permeability and improve the efficiency and environmental performance of resource recovery. Her research contributes to the development of sustainable extraction pathways for critical minerals and rare earth elements, addressing industrial challenges associated with energy consumption, processing cost, and recovery efficiency. She has authored multiple peer-reviewed journal articles and international conference papers, with her published research currently achieving 125 citations referenced by 105 citing documents, supported by an h-index of 5 and an i10-index of 3, demonstrating the growing academic recognition of her scientific contributions. Dr. Kafashi has accumulated extensive technical experience across leading mining organizations including large-scale operations and metallurgical laboratories, working on drill-and-blast optimization, vibration control strategies, production planning, ore blending, and experimental evaluation of rock treatment methods. Her professional background further includes roles in consultancy, international sales, laboratory supervision, and research project execution. She is an active contributor to conferences, professional training programs, and international workshops, and holds memberships in multiple prestigious scientific and engineering organizations. Known for integrating industrial problem-solving with scientific innovation, Dr. Kafashi is committed to advancing sustainable engineering technologies, supporting STEM excellence, and contributing meaningful research that strengthens global mining and resource recovery industries.
Kafashi, S., Rasaei, M., & Karimi, G. (2017). Effects of sugarcane and polyanionic cellulose on rheological properties of drilling mud: An experimental approach. Egyptian Journal of Petroleum, 26(2), 371–374.
K., Sahar., & … (2021). Visual study of TiO₂ nanofluid stabilization methods on inhibition of asphaltene precipitation in porous media. Minerals Engineering, 169.
Kafashi, S., Kuhar, L., Bóna, A., & Nikoloski, A. N. (2023). Review of fracturing techniques (microwaves, high-voltage pulses, and cryogenic fluids) for application as access creation method in low-permeability hard rocks for potential … Mineral Processing and Extractive Metallurgy Review, 1–16.
Kafashi, S., Rasaei, M. R., & Karimi, G. R. (2020). Experimental study of nanoclay absorbents and additives’ effects on modification of rheological properties of drilling fluids in porous media using glass micromodel. Journal of Porous Media, 23(6).
Kafashi, S., Taghdimi, R., & Karimi, G. (2014). Modification of nanoclay systems: An approach to stabilizing drilling fluids. Advanced Materials Research, 829, 818–824.
Assist. Prof. Dr. Leila Ma’mani is a distinguished Iranian researcher in the fields of nanotechnology, organic chemistry, and advanced nano-drug delivery systems, currently serving as Assistant Professor in the Department of Nanotechnology at the Agricultural Biotechnology Research Institute of Iran under AREEO. She has built an outstanding scientific profile with 2,290 citations, indexed across 1,963 documents, and has produced 76 publications, reflecting her extensive contributions to scientific knowledge. Her impressive scholarly influence is further demonstrated by an h-index of 28, positioning her among the top-tier researchers in nanotechnology and applied agricultural sciences. Dr. Ma’mani’s research focuses on the design and synthesis of nanoporous and hybrid nanocomposite delivery systems, targeted release technologies for bioactive and chemical agents, magnetic nanoparticles, nanobiocatalysis, environmentally sustainable nanomaterials, and innovative CRISPR/Cas-based agricultural nanocarriers. She has actively contributed to national and international scientific leadership, serving in multiple managerial and committee roles including headship of the Nanotechnology Department and secretary roles in scientific and research committees within the Ministry of Agriculture. Dr. Ma’mani has supervised and advised numerous postgraduate researchers and continues to support multidisciplinary training and innovation. Her awards and recognitions highlight her leadership and pioneering contributions in the development of sustainable nanotechnological approaches for agriculture, biotechnology, plant science, and medical applications. Throughout her career, she has published widely in high-impact journals and collaborated with research teams working on drug delivery, nanopesticides, nano-fertilizers, advanced catalytic materials, and biosafety applications. Her work has produced real-world contributions that address global needs related to food security, crop protection, biomedical therapy, environmental safety, and smart controlled-release nanotechnology systems. Dr. Leila Ma’mani remains deeply committed to advancing scientific excellence and translating research outcomes into practical industrial, agricultural, and health solutions through cutting-edge nanotechnology innovation.
Jokarshourijeh, F., Ma’mani, L., Hossein, R., & Sheikhigarjan, A. (2025). Organically modified biogenic graphene oxide–mesoporous silica nanoparticles for eco-friendly and tailored release of Azadirachtin (neem) biopesticide. Chemical and Biological Technologies in Agriculture, 12(1), 159.
Shemshaki, N. S., Sharifi, K., Khodaparast, S. A., Mamani, L., & Mousanejad, S. (2024). The efficiency of mineral compounds for the control of strawberry blossom blight caused by Botrytis cinerea. European Journal of Plant Pathology, 170(3), 491–500.
Eigharlou, M., Javidpoor, S., Mohammadi, A., Khelghatibana, F., Nami, Y., … (2024). Evaluation of herbicidal potential of Siderophores produced by Amycolatopsis lurida strain 407. Scientific Reports, 14(1), 26212.
Najafzadeh Nansa, M., Ma’mani, L., & Ghorbanloo, M. (2024). Control of mushroom sciarid fly with an ecofriendly nanoinsecticide. Journal of Biosafety, 16(4), 81–94.
Tahere Raiesi Ardali, A. M., Ma’mani, L., & Chorom, M. (2023). *The efficiency of Fe3O4 nanoparticles coated with humic acid on tomato growth characteristics (Lycopersicon esculentum L.). Journal of Plant Ecophysiology, 1(14), 34.
Ms. Lihong Ding is an accomplished researcher and experimenter in the field of mechanical engineering, currently serving at Jiangsu University of Technology, where she plays a key role in advancing laboratory instruction, engineering innovation, and collaborative research initiatives. With strong academic training in mechanical engineering and extensive hands-on laboratory experience, she has established herself as a dedicated educator and emerging researcher contributing to the development of advanced manufacturing processes and high-performance materials. Her work centers on laser cladding additive manufacturing, with a particular focus on structural integrity, crack arrest mechanisms, and material performance enhancement for demanding industrial environments, including aerospace and high-strength engineering systems. Ms. Ding has authored multiple research publications in reputable peer-reviewed journals, including core and SCI-indexed articles, demonstrating her commitment to academic excellence and knowledge dissemination. Among her notable scientific contributions is her research on the crack arrest effect of FeMnNiSi-Inconel625-Ni60 laminated structures produced through laser cladding additive manufacturing, which provides valuable insight into process-structure-property relationships and improved crack resistance for advanced gradient materials. She has participated in collaborative education initiatives supported by national academic-industry innovation platforms and has contributed to research project development related to emerging engineering applications. In addition to her scientific achievements, she has authored educational materials, including the professional training book “CNC Lathe Skill Training and Competition Question Selection,” supporting skills development and technical education for engineering students. Through her dedication to experimental teaching, research supervision, and laboratory innovation, Ms. Ding continues to foster strong academic-industry integration and advancement in next-generation manufacturing technologies. Her work reflects a commitment to excellence, professional development, and meaningful scientific impact, positioning her as a promising researcher and valued contributor to the mechanical engineering community.
Ding, L., Lei, W., & Chen, J. (2025). Crack arrest effect of FeMnNiSi–Inconel 625–Ni60 laminated structure prepared by laser cladding additive manufacturing. Materials, 18(21), 4996.