Ms. Amna H. M. Mahmoud | Nanomaterials | Research Excellence Award

Minia University | Egypt

Ms. Amna H. M. Mahmoud is an emerging researcher in nanomaterials and computational chemistry, recognized for her rapidly growing contributions to density functional theory (DFT), nanosheet adsorption mechanisms, and computational materials design. She serves as a Research Assistant at the CompChem Research Laboratory, Faculty of Science, Minia University, where she plays a key role in advancing theoretical modeling for environmental applications, drug delivery, biosensing, and corrosion inhibition. Her scientific impact is reflected through 13 publications, an h-index of 7, and 131 citations indexed across 107 citing documents, demonstrating the strong scholarly attention her work has earned within a short span. With expertise spanning quantum mechanical calculations, molecular dynamics simulations, and advanced computational tools such as Gaussian, Quantum Espresso, and VESTA, she has contributed to highly cited collaborative studies exploring adsorption phenomena on graphene, borophene, and RuC nanosheets. Her research addresses critical challenges, including toxic molecule detection, metal corrosion protection, pharmaceutical molecule interactions, and nanosheet-based sensing strategies. As a Research Assistant, she has also contributed to a funded national project focused on developing corrosion inhibitors for active metals in space environments using cutting-edge computational techniques, showcasing her ability to work at the interface of materials science and aerospace-oriented applications. In addition to her research accomplishments, she actively manages the Computational Chemistry Laboratory, supports quality assurance and accreditation processes, and participates in scientific conferences with multiple oral presentations on σ-hole interactions, surface adsorption, and nanoscale material behavior. Her growing academic influence in Egypt and internationally is further supported by her membership in the Egyptian Society of Theoretical and Computational Chemistry. Through a strong portfolio of impactful publications, interdisciplinary collaborations, and specialized computational expertise, Ms. Amna H. M. Mahmoud continues to establish herself as a promising scientist contributing meaningful advancements to the fields of nanomaterials and computational chemistry.

Profiles: Scopus | Orcid

Featured Publications

Ibrahim, M. A. A., Mahmoud, A. H. M., Mekhemer, G. A. H., El‐Tayeb, M. A., Khan, S., & Shoeib, T. (2025). Adsorption features of toxic pnictogen hydrides over pristine and C/Be‐doped borophene nanosheets as potential sensors: A DFT investigation.

Mahmoud, A. H. M., Aziz, M. E. S., Rabee, A. I. M., El‐Tayeb, M. A., Mekhemer, G. A. H., Shoeib, T., & Ibrahim, M. A. A. (2025). Exploring the adsorption features of furan and 1,n-dioxane as environmental toxins on two-dimensional RuC nanosheet: A DFT study.

Mahmoud, A. H. M., Al-saied, T. M. T., Rabee, A. I. M., El-Tayeb, M. A., Mekhemer, G. A. H., Shoeib, T., & Ibrahim, M. A. A. (2025). Two-dimensional RuC nanosheet as potential sensor for toxic cyanogen halides (NCX; X = H, F, Cl, Br, and I): A DFT study.

Ibrahim, M. A. A., Ahmed, N. K. M., Mahmoud, A. H. M., El-Tayeb, M. A., Abdelbacki, A. M. M., Khan, S., Soliman, M. E. S., & Shoeib, T. (2024). RuC nanosheet as a promising biosensing material for detecting the aromatic amino acids: A DFT study.

Mohamed, L. A., Mahmoud, A. H. M., Rady, A. S. M., El‐Tayeb, M. A., Rabee, A. I. M., Shoeib, T., & Ibrahim, M. A. A. (2024). Allopurinol, oxypurinol, and thiopurinol expired drugs as corrosion inhibitors toward Al (111) surface: A DFT and FPMD simulation study.

Ms. Amna H. M. Mahmoud | Nanomaterials | Research Excellence Award

You May Also Like