Prof. Dr Ramasamy Paulmurugan | Biomaterials | Best Researcher Award

Prof. Dr Ramasamy Paulmurugan | Biomaterials | Best Researcher Award

Prof. Dr. Ramasamy Paulmurugan is a globally recognized biomedical scientist and Professor of Radiology at Stanford University School of Medicine 🏛️. With expertise in molecular imaging, nanomedicine, and gene therapy, his work focuses on cancer diagnostics and targeted therapeutics 🎯🧫. He leads the Cellular Pathway Imaging Laboratory, developing cutting-edge biosensors and nanoparticle-based delivery systems 💡🧪. Author of 145+ publications, he has received prestigious awards for innovation and research excellence 🏅📚. His interdisciplinary impact spans academia, clinical research, and biotechnology, making him a trailblazer in translational medicine and precision oncology 🌐⚕️.

Prof. Dr Ramasamy Paulmurugan, Stanford University, United States

Profile

SCOPUS

ORCID

GOOGLESCHOLAR

Education  🎓

Prof. Dr. Ramasamy Paulmurugan began his academic journey with a B.Sc. in Zoology, Botany, and Chemistry (1986–1989) from Madurai Kamaraj University, India 🐸🌿🧪. He pursued an M.Sc. in Biomedical Genetics (1989–1991) at the University of Madras, developing a strong foundation in genetic science and human biology 🧬🧠. He then earned a Ph.D. in Biomedical Genetics with specialization in Molecular Virology (1991–1997) from National Environmental Engineering Research Institute and University of Madras, India 🔬🦠. His education equipped him with the interdisciplinary knowledge and research skills essential for his impactful work in cancer biology and molecular medicine 💡⚕️.

Honors & Awards 🏅

Prof. Dr. Ramasamy Paulmurugan has received numerous prestigious awards throughout his career for outstanding contributions to biomedical science 🧬🧠. His accolades include the Best Research Fellow Award (1991) from CSIR-NEERI 🇮🇳, the Young Scientist Award (1999) from the Government of Kerala, and multiple Travel Awards from international imaging societies for best paper presentations in the USA and Germany ✈️📄. He was honored with the Distinguished Investigator Award (2018) by the Academy for Radiology & Biomedical Imaging Research 🧪 and recently received the SAASCR Outstanding Achievement Award (2025) for advancing Asian American cancer research 🌍🔬.

Experience  🏥

Prof. Dr. Ramasamy Paulmurugan has over three decades of research and academic experience across India and the United States 🌍. He began as a Junior and Senior Research Fellow in Molecular Virology in India (1991–1996) 🔬, later leading the Environmental Biotechnology Division at RGCB as Scientist B and C (1996–1999, 1999–2003) 🧫. He was a Visiting Scientist at UCLA (2001–2003) 🧠, then joined Stanford University, where he advanced from Senior Research Scientist to Professor of Radiology (2003–present) 🏛️. His roles have spanned molecular imaging, translational research, and biomedical innovation across prestigious global institutions 💡📈.

Book Chapter 📖

Prof. Dr. Ramasamy Paulmurugan has authored and co-authored over 27 book chapters, contributing to prestigious scientific volumes on molecular imaging, cancer biology, gene therapy, bioluminescence, and nanomedicine 📖🔬. His work spans publishers like Springer, Elsevier, Cambridge University Press, and World Scientific, reflecting his expertise in cutting-edge biomedical innovations 🌍📗. Topics include theranostics, glioblastoma resistance, protein-protein interaction imaging, microRNA therapy, and nanoparticle-based delivery systems for precision medicine 🎯💊. His chapters are widely cited and used globally in advanced medical research, showcasing his status as a thought leader in translational and molecular medicine 🧪🌟.

Conference Presentations 🌍🎤

Prof. Dr. Ramasamy Paulmurugan has presented over 220 abstracts at leading international conferences spanning oncology, molecular imaging, nanomedicine, and gene therapy 🧬🧠. His research has been showcased at AACR, WMIC, RSNA, IEEE, ASNR, and SPIE, reflecting sustained excellence and innovation across decades 🏛️🔬. Topics include molecular biosensors, microRNA therapy, nanoparticle delivery, ultrasound imaging, and cancer diagnostics. These presentations highlight collaborations with global experts and his role in pioneering translational research that bridges bench to bedside 🧪➡️🏥. His prolific and consistent contributions demonstrate global recognition and influence in biomedical innovation 🌐🏅.

Research Focus 🔬

Prof. Dr. Ramasamy Paulmurugan’s research centers on molecular imaging, nanomedicine, and gene-based therapies to combat cancer and metabolic diseases like diabetes 🧠⚕️. He pioneers in vivo imaging of protein–protein interactions, miRNA delivery, and biosensor technologies for real-time monitoring of disease pathways 🧬📸. His innovations include split-luciferase systems, cell membrane-coated nanocarriers, and redox-sensitive signaling tools for precision therapeutics 🎯🧪. Bridging molecular biology with biomedical engineering, his translational research focuses on targeted drug delivery, noninvasive diagnostics, and theranostic nanoparticles, contributing significantly to personalized medicine and cancer theranostics 💉🧠🌐.

Publications 📚

The fate and toxicity of Raman-active silica-gold nanoparticles in mice
Authors: A.S. Thakor, R. Luong, R. Paulmurugan, F.I. Lin, P. Kempen, C. Zavaleta, et al.
Journal: Science Translational Medicine, Vol. 3 (79), 79ra33

Noninvasive quantitative imaging of protein–protein interactions in living subjects
Authors: P. Ray, H. Pimenta, R. Paulmurugan, F. Berger, M.E. Phelps, M. Iyer, et al.
Journal: Proceedings of the National Academy of Sciences (PNAS), Vol. 99 (5), 3105–3110

The emerging role of redox-sensitive Nrf2–Keap1 pathway in diabetes
Authors: E. Bhakkiyalakshmi, D. Sireesh, P. Rajaguru, R. Paulmurugan, et al.
Journal: Pharmacological Research, Vol. 91, 104–114

Ultrasound-guided delivery of microRNA loaded nanoparticles into cancer
Authors: T.Y. Wang, J.W. Choe, K. Pu, R. Devulapally, S. Bachawal, S. Machtaler, R. Paulmurugan, et al.
Journal: Journal of Controlled Release, Vol. 203, 99–108

Effects of epigenetic modulation on reporter gene expression: implications for stem cell imaging
Authors: M. Krishnan, J.M. Park, F. Cao, D. Wang, R. Paulmurugan, J.R. Tseng, et al.
Journal: FASEB Journal, Vol. 20 (1), 106–108

Firefly luciferase enzyme fragment complementation for imaging in cells and living animals
Authors: R. Paulmurugan, S.S. Gambhir
Journal: Analytical Chemistry, Vol. 77 (5), 1295–1302

Molecular imaging of drug-modulated protein-protein interactions in living subjects
Authors: R. Paulmurugan, T.F. Massoud, J. Huang, S.S. Gambhir
Journal: Cancer Research, Vol. 64 (6), 2113–2119

Detection of hepatitis E virus in raw and treated wastewater with the polymerase chain reaction
Authors: N. Jothikumar, K. Aparna, S. Kamatchiammal, R. Paulmurugan, et al.
Journal: Applied and Environmental Microbiology, Vol. 59 (8), 2558–2562

Combinatorial library screening for developing an improved split-firefly luciferase fragment-assisted complementation system
Authors: R. Paulmurugan, S.S. Gambhir
Journal: Analytical Chemistry, Vol. 79 (6), 2346–2353

Cell membrane-coated nanocarriers: the emerging targeted delivery system for cancer theranostics
Authors: R.J.C. Bose, R. Paulmurugan, J. Moon, S.H. Lee, H. Park
Journal: Drug Discovery Today, Vol. 23 (4), 891–899

Mr Mohammed Amine ZITOUNI | Biomaterials | Best Researcher Award

Mr Mohammed Amine ZITOUNI | Biomaterials | Best Researcher Award

Mr. Mohammed Amine Zitouni is an Algerian researcher specializing in polymer chemistry and macromolecular organic chemistry. He was born on August 31, 1985, in Sabra, Tlemcen, Algeria. Currently pursuing a Ph.D. in Polymer Chemistry at the University of Tlemcen, he holds a strong academic foundation with a Magister degree and a postgraduate diploma in chemistry. Mr. Zitouni has engaged in both national and international scientific activities, including participation in major conferences across Algeria and Russia. His research focuses on novel hydrogel synthesis, polymeric drug delivery systems, and chitosan-based materials.

Mr Mohammed Amine ZITOUNI, Laboratory of Research on macromolecules, Department of Chemistry, Science Faculty, University of Tlemcen, Algeria

Profile

ORCID

🎓 Education

Mr. Mohammed Amine Zitouni has a strong academic foundation in chemistry and life sciences 📘🧪. He earned his Bachelor’s degree in Natural and Life Sciences in June 2003 🎓🌿. He then pursued a Postgraduate Diploma in Chemistry from the University of Tlemcen in September 2007 🧬🏫. In December 2010, he obtained a Magister’s degree specializing in Macromolecular Organic Chemistry and Physical Chemistry ⚗️📚. Currently, he is working toward a Ph.D. in Polymer Chemistry at the University of Tlemcen, focusing on advanced polymeric materials for biomedical applications 🔬📖. His education reflects a clear commitment to scientific advancement.

🌍 Scientific Activities

Mr. Mohammed Amine Zitouni has actively participated in national and international scientific forums 🌐. He presented at the 10th International Conference of the European Chitin Society in Russia and major Algerian conferences like the CIMPC’17 in Tlemcen and the National Seminar on Polymers in Bejaïa 🎤🧪. With one year in the university tutoring program and four years of teaching LMD ST practical work, he contributes to student development 🎓🧑‍🏫. His research led to international publications on chitosan/PVA hydrogels in Advanced Materials Research and Annales pharmaceutiques françaises, focusing on novel drug delivery systems 📄💊.

💻 Skills

Mr. Mohammed Amine Zitouni is a multilingual researcher with strong communication and technical skills 🌍🧠. He is a native Arabic speaker, and is proficient in reading and writing in French and English, including technical scientific English for academic and research purposes 📘📚. His language skills allow him to effectively engage with international research communities and contribute to global scientific discourse 🌐✍️. In addition, he possesses excellent computer skills, demonstrating a perfect command of software tools and digital platforms essential for scientific research, data analysis, and academic publishing 🧑‍💻📊.

🔬 Research Focus

Mr. Mohammed Amine Zitouni’s research focuses on the synthesis and characterization of biopolymer-based hydrogels for pharmaceutical applications 🧪💊. He develops advanced drug delivery systems using crosslinked chitosan and polyvinyl alcohol (PVA), aiming to enhance controlled release of antibiotics such as chlorotetracycline hydrochloride 🔄🧫. His work explores the physicochemical interactions within hydrogels to optimize stability, biocompatibility, and drug release efficiency 📈🧬. This research holds significant promise for medical treatments requiring sustained delivery mechanisms and aligns with sustainable, biodegradable material innovation 🌱🔍. His expertise contributes to the intersection of polymer science and biomedical engineering 🧠🏥.

📘 Publications

Preparation and characterization of hydrogels based on Chitosan/polyvinyl alcohol blends
Journal: Advanced Materials Research
Focus: Synthesis and structural analysis of biocompatible hydrogels for advanced material applications.
🧪💧

Release of Chlorotetracycline Hydrochloride From Novel Hydrogels Based On Crosslinked Chitosan And PVA
Journal: Annales Pharmaceutiques Françaises
Focus: Controlled drug release systems using crosslinked hydrogels for pharmaceutical applications.
💊🧬📗

Dr Feryal Akay | Biomaterials | Best Researcher Award

Dr Feryal Akay | Biomaterials | Best Researcher Award

Dr. Feryal Akay is a PhD graduate in Chemistry from Dicle University (2023), specializing in human immunoglobulin G glycation and the effects of Morus nigra leaf extract on DNA glycation. She has participated in key national projects and has contributed to high-impact publications in journals like Archives of Biochemistry and Biophysics (2025) and Indian Journal of Biochemistry and Biophysics (2024). With experience as an Ar-Ge specialist at Labixir, Dr. Akay is deeply committed to advancing glycation research and is a strong candidate for the Best Researcher Award. 📚🧬🌿

Dr Feryal Akay, University of Dicle, Turkey

Profile

ORCID

SCOPUS

Education🎓

Dr. Feryal Akay completed her PhD in Chemistry at Dicle University in 2023, with a thesis on the glycation of human immunoglobulin G and its impact on antigen binding, supervised by Prof. Dr. Göksel Kızıl and Prof. Dr. Beran Yokuş. She also earned her Master’s in Chemistry from the same university in 2018, focusing on the effects of Morus nigra leaf ethanol extract on DNA glycation. Dr. Akay completed her Bachelor’s degree in Chemistry in 2015 at Dicle University’s Faculty of Science. 🎓🧪📜

Experience🩺

Dr. Feryal Akay worked as an Ar-Ge (Research and Development) Specialist at Labixir, a pharmaceutical analysis laboratory, from November 2021 to August 2022. In this role, she contributed to various research and development projects, specializing in pharmaceutical analysis and innovative techniques in the field. Her work involved analyzing and improving the efficacy of pharmaceutical products, contributing to the advancement of the pharmaceutical industry. Dr. Akay’s experience in this commercial sector allowed her to apply her academic expertise in a practical, real-world environment, further enhancing her skill set in both research and pharmaceutical development. 💊🔬🧪

Certificate 🏅

Dr. Feryal Akay has earned several prestigious certificates for her participation in international conferences. She attended the 1st International Multidisciplinary Cancer Research Congress held at Dicle University in Diyarbakır from 18-22 September 2019. She also participated in the INESEC 2018, The International Engineering Natural Science Conference, from 14-17 November 2018. Additionally, Dr. Akay presented a Oral Presentation at the 6th International Congress on Pharmaceutical Chemistry in Antalya/Belek, held by Atatürk University and the Chemists Association, from 22-25 March 2018. 🏅🎓🌍📚

Research Focus 🔬

Dr. Feryal Akay’s research primarily focuses on glycation and its impact on immune function. Her studies explore how fructose-derived glycation affects antigen binding in human IgG and lymphocytes, aiming to better understand the role of glycation in immune responses (Archives of Biochemistry and Biophysics, 2025). Additionally, Dr. Akay has investigated the inhibitory effects of Morus nigra leaf extract on DNA glycation and its potential in preventing advanced glycation end products (Indian Journal of Biochemistry and Biophysics, 2024). Her work also includes the antiglycative effects of Capsicum annuum (chili) and pyridoxamine in experimental diabetes models (Revista Brasileira de Farmacognosia, 2023). 🌱🧬🔬

Publications📚

Fructose-derived glycation and immune function: Effects on antigen binding in human IgG and lymphocytes 🧬

  • Authors: Feryal Akay, Nesrin İnceören, Cemal Nas, Beran Yokuş, Göksel Kızıl, Murat Kızıl
  • Journal: Archives of Biochemistry and Biophysics

Evaluation of ethanol extract of Morus nigra L. as an inhibitory agent for DNA-Advanced glycation end product (DNA-AGEs) 🍃

  • Authors: Feryal Akay
  • Journal: Indian Journal of Biochemistry and Biophysics

Antiglycative Effect of Combination of Extracts of Capsicum annuum (chilli) and Pyridoxamine Against Glycation in Streptozotocin-induced Experimental Diabetes in Rats 🌶️

  • Authors: Nesrin İnceören, Feryal Akay, Cemal Nas, Engin Deveci, Göksel Kızıl, Murat Kızıl
  • Journal: Revista Brasileira de Farmacognosia

Determination Of Antioxidant Activity of Dietary Selenium, Oleuropein, Glutathione Mixture 🥗

  • Authors: Feryal Akay, Göksel Kızıl
  • Journal: European Journal of Technic

Dr Xiong-Xin Lei | Biomaterials | Best Researcher Award

Dr Xiong-Xin Lei | Biomaterials | Best Researcher Award

Dr Xiong-Xin Lei, First People’s Hospital of Foshan, China

Dr. Xiong-Xin Lei, a distinguished postdoctoral researcher at the First People’s Hospital of Foshan, holds a Ph.D. in Medicine from Sichuan University. With expertise in functional hydrogels, his groundbreaking research focuses on innovative applications in endoscopic treatments, hemostasis, and wound repair. Over the last five years, Dr. Lei has authored eight high-impact papers in prestigious journals like Bioactive Materials and Advanced Science. His dedication to innovation is evident in his seven granted patents, making significant strides in biomaterials and regenerative medicine. Dr. Lei’s work exemplifies excellence in bridging science and clinical applications

Publication Profile

Scopus

Academic Background🎓

Dr. Xiong-Xin Lei has a strong academic background in medicine and biomedical engineering. 🎓 He is currently a Post-Doctoral Fellow at the First People’s Hospital of Foshan, China, since August 2022. 🏥 Dr. Lei earned his Doctor of Medicine degree from Sichuan University (2019–2022), specializing in microbiology and biochemical pharmacy. 🔬 He also holds a Master of Medicine degree (2015–2017) and a Bachelor of Engineering degree (2011–2015) from Beijing University of Chinese Medicine, focusing on biopharmaceuticals and biomedical engineering, respectively. 💊 His expertise combines advanced medicine and engineering techniques for innovative healthcare solutions. 🌟

Research Focus Area 🌱🧬

Dr. Xiong-Xin Lei specializes in the development, design, and application of functional hydrogels for biomedical purposes. 🧬 His research focuses on innovative solutions for endoscopic treatments of the digestive tract, hemostasis, and wound repair. 🩺 Over the past five years, he has made significant contributions, publishing 8 research papers in prestigious journals such as Bioactive Materials, Advanced Science, and Chemical Engineering Journal. 📚 Additionally, Dr. Lei holds 7 granted invention patents, reflecting his innovative approach to medical applications of hydrogels. 💡 His work bridges materials science and regenerative medicine for advanced healthcare solutions. 🌟

Notable Achievements

Dr. Xiong-Xin Lei has achieved remarkable success in his research career over the past five years. 🌟 He has authored eight high-impact research papers published in prestigious journals such as Bioactive Materials, Advanced Science, and Chemical Engineering Journal. 📚 His groundbreaking studies have made significant contributions to the fields of regenerative medicine and smart materials, particularly in developing innovative hydrogels for medical applications. 🧬 Dr. Lei’s work highlights his dedication to advancing healthcare solutions through cutting-edge research, earning him recognition as a leader in his field. 🩺✨

Publication Top Notes🌟📊📚

Multi-crosslinking hydrogels with robust bio-adhesion and pro-coagulant activity for first-aid hemostasis and infected wound healing

A Self-Assembly Pro-Coagulant Powder Capable of Rapid Gelling Transformation and Wet Adhesion for the Efficient Control of Non-Compressible Hemorrhage

Application of metabolomics in urolithiasis: the discovery and usage of succinate

Multifunctional two-component in-situ hydrogel for esophageal submucosal dissection for mucosa uplift, postoperative wound closure and rapid healing

Click-crosslinked in-situ hydrogel improves the therapeutic effect in wound infections through antibacterial, antioxidant and anti-inflammatory activities

Scarless Healing of Injured Vocal Folds Using an Injectable Hyaluronic Acid-Waterborne Polyurethane Hybrid Hydrogel to Tune Inflammation and Collagen Deposition

Promotion of right ventricular outflow tract reconstruction using a novel cardiac patch incorporated with hypoxia-pretreated urine-derived stem cells

 

 

Prof. Dr Yusuf ÖZCAN | Biomaterials | Best Researcher Award

Prof. Dr Yusuf ÖZCAN | Biomaterials | Best Researcher Award

Prof. Dr Yusuf ÖZCAN, Pamukkale University, Turkey

Prof. Özcan is a leading expert in bio-inspired nanomaterials and drug delivery systems, with a focus on advancing both biomedical engineering and environmental sustainability. His pioneering research has led to significant breakthroughs in the development of innovative materials that address critical health challenges and environmental concerns. With a proven track record of successful projects and publications, Prof. Özcan is known for his leadership in the field and his ability to bridge the gap between cutting-edge science and practical applications. His work continues to shape the future of healthcare and environmental solutions. 🌱🔬💉

Publication Profile

GoogleScholar

Orcid

Educational Background 🎓

Prof. Yusuf Özcan holds an M.S. and Ph.D. in Physics Engineering from Hacettepe University, Ankara, Turkey, where he gained expertise in advanced materials and their applications. He completed his B.S. in Physics at Atatürk University, Erzurum, Turkey. Prof. Özcan is currently an Associate Professor at Pamukkale University, Faculty of Technology, Department of Biomedical Engineering, where he has been shaping the future of biomedical technologies since 1992. Additionally, he has collaborated internationally, contributing to research at the National Synchrotron Radiation Research Center in Hsinchu, Taiwan, in 2006-2007. His diverse educational background fuels his innovative research in biomedical engineering. 🎓🔬🌍

Professional Experience and Contributions 💼

Prof. Yusuf Özcan is a distinguished Professor of Biomedical Engineering at Pamukkale University, with over 20 years of expertise in advanced material science. He holds a Bachelor’s in Physics from Atatürk University and a Ph.D. in Physical Engineering from Hacettepe University. His research spans stimuli-responsive polymers, bone tissue engineering, nanocomposites for drug release, and synchrotron-based nanomaterial analysis. Notable works include developing bio-nanocomposites for bone regeneration, hybrid hydrogels for controlled drug release, and eco-friendly biosensors for heavy metal detection. Prof. Özcan’s groundbreaking contributions have advanced biomedical engineering, nanotechnology, and environmental sustainability. 🎓🔬🌱

Research and Innovations

Prof. Yusuf Özcan has led over 20 national and international research projects, including TÜBİTAK and SESAME-supported studies, with an h-index of 10 and over 390 citations. His research focuses on biomedical engineering, nanocomposites, and stimuli-responsive polymers. He has published over 30 peer-reviewed articles in high-impact journals, and is actively working on bio-inspired nanomaterial patents. With collaborations across the globe, including Taiwan’s National Synchrotron Radiation Research Center (NSRRC), Prof. Özcan has made significant strides in advanced drug delivery systems and eco-friendly materials. He is also a member of the Turkish Physical Society. 🔬🌍📚

Research Focus Area 🌱🧬

Prof. Yusuf Özcan’s research primarily focuses on biomedical engineering, nanotechnology, and material science. His work includes the development of advanced biopolymeric nanomaterials for controlled drug delivery systems, innovative bone tissue scaffolds, and eco-friendly biosensors. Prof. Özcan specializes in stimuli-responsive polymers, nanocomposites, and synchrotron-based material analysis. He has made significant contributions to environmental sustainability by creating green materials and eco-friendly sensors for detecting heavy metals. His research extends to the development of hybrid films and microbeads for targeted drug release, enhancing the efficiency of therapeutic treatments. 🧬💊🌿

Publication Top Notes

Structure, antibacterial activity and theoretical study of 2-hydroxy-1-naphthaldehyde-N-methylethanesulfonylhydrazone

Synthesis, characterization, biological activities of dimethyltin (IV) complexes of Schiff bases with ONO-type donors

Characterization and Production of Extracellular Polysaccharides (EPS) by Bacillus Pseudomycoides U10

Structure and characterization of N-(2-hydroxy-1-naphthylidene) threonine

Structural and spectroscopic characteristics of two new dibenzylbutane type lignans from Taxus baccata L.

Crystallographic report: Bis {µ‐[O‐cyclopentyl (4‐methoxyphenyl) dithiophosphonato] 1κ: S, 2κ: S‐[O‐cyclopentyl (4‐methoxyphenyl) dithiophosphonato]‐1κ2S, S′} dicadmium (II)

STRUCTURAL, ELECTRICAL AND OPTICAL PROPERTIES OF THERMALLY EVAPORATED CdSe AND In-DOPED CdSe THIN FILMS.

Micellization behavior of tertiary amine-methacrylate-based block copolymers characterized by small-angle X-ray scattering and dynamic light scattering

trans-Bis [O-2, 4-di-tert-butylphenyl (4-methoxyphenyl) dithiophosphonato-κ2S, S′] nickel (II)

Crystal and Molecular Structures of trans-Nickel (II)-bis [(O-propyln)-(p-methoxyphenyl) dithiophosphonate]

Conclusion

Prof. Dr. Yusuf Özcan’s extensive body of work demonstrates not only scientific excellence but also practical contributions to pressing global challenges, making him a strong and deserving candidate for this award. His innovative approach and global collaboration signify a researcher who is pushing the boundaries of materials science and biomedical engineering.

Dr Markus Laubach | Biomaterials | Best Researcher Award

Dr Markus Laubach | Biomaterials | Best Researcher Award

Dr Markus Laubach, LMU University Hospital Munich, Germany

Dr. Markus Laubach 🎓🩺 is a distinguished researcher in orthopaedics and medical innovation. Holding a Ph.D. in preclinical assessment of novel medical devices, an MBA in Healthcare Management, and certifications in emergency medicine, he combines clinical expertise with research excellence. 🏥🔬 His groundbreaking work focuses on scaffold-guided bone regeneration, 3D-printed implants, and bone grafting techniques, published in top journals like Biomaterials Science and Scientific Reports. 💡📚 Dr. Laubach has secured over EUR 350,000 in grants and won prestigious awards, including the Best Poster Award at DKOU 2023. 🌍 He actively collaborates globally, advancing orthopaedic trauma care. 🦴✨

Publication Profile

Orcid

Scopus

Education and Training🎓

Dr. Markus Laubach 🎓 began his educational journey at Stefan-George-Gymnasium, earning his Abitur in 2007 🎒. He trained as a paramedic 🚑 at Arbeiter-Samariter-Bund in 2008. He pursued Medicine 🩺 at Maastricht University (2010–2016) and earned his Dr. med. from Charité Berlin in 2019 📚, focusing on brain aging and executive functioning 🧠. Further, he specialized in Emergency Medicine 🚨 and completed his Ph.D. at QUT 🦴 (2020–2023), researching bone graft aspirator devices. Recently, he earned an MBA 🎓 in Health Care Management 🏥. Currently, he advances orthopaedic research at LMU Munich through the prestigious Feodor Lynen Fellowship 🌍.

Professional Experience💼

Dr. Markus Laubach 🩺 has extensive professional experience in orthopaedics and trauma surgery. He is currently a Resident at the LMU University Hospital 🏥, Musculoskeletal University Center Munich (2023–present). Previously, he worked as a Resident at RWTH Aachen University Hospital (2016–2020) 🦴, advancing his surgical expertise. Dr. Laubach further honed his skills in medtech commercialization through The BridgeTech Program 🌐 in Australia (2021–2022). His medical journey began as a Paramedic 🚑 with organizations like Malteser Hilfsdienst (2011–2016), Arbeiter Samariter Bund (2009–2010), and DRK Rettungsdienst GmbH (2008–2009), reflecting his dedication to emergency medical care and patient well-being 🤝.

Research Focus Area 🌱🧬

Markus Laubach is a researcher specializing in biomaterials, bone regeneration, and spinal surgery innovations. His work primarily focuses on advancing implants, scaffolds, and bone grafts for clinical applications, particularly in lumbar spinal fusion and bone defect treatments. He is involved in designing 3D printable, patient-specific bioresorbable bone scaffolds to promote bone regeneration. Laubach’s research extends to the development of novel bone graft harvesting techniques and the assessment of biodegradable interbody cages. His work intersects with orthopaedic trauma, regenerative medicine, and biomechanics. 🦴🧬🩺

Memberships

Dr. Markus Laubach is an active member of several prestigious medical and research organizations. He is affiliated with AO Trauma 🦵, focusing on advancing trauma care, and the Deutsche Gesellschaft für Orthopädie und Unfallchirurgie (DGOU) 🇩🇪, which promotes orthopedic and trauma surgery excellence. He also participates in the Gesellschaft für Extremitätenverlängerung und -rekonstruktion (GEVR) 🦴, dedicated to extremity reconstruction. Additionally, Dr. Laubach is a member of the Orthopaedic Research Society (ORS) 🔬 and the Tissue Engineering and Regenerative Medicine International Society (TERMIS) 🌍, contributing to cutting-edge research in tissue engineering and regenerative medicine.

Awards🏆

Dr. Markus Laubach has received notable recognition for his scientific contributions. In 2023, he was awarded the Best Poster Award at the DKOU 2023 in Berlin 🏆. His research has attracted competitive grants, including EUR 182,022.36 from the Bundesministerium für Bildung und Forschung for a clinical study on tibial transverse callus distraction in diabetic foot ulcer patients 💉, and EUR 39,600 from the Feodor Lynen Return Fellowship 🏅. Dr. Laubach also secured funding from the Volkswagen Foundation (EUR 38,000) and Clive & Vera Ramaciotti Foundation (AUD 130,000) for innovative bone defect treatments using 3D-printed scaffolds.

Publication Top Notes📄✨

Advances in implants and bone graft types for lumbar spinal fusion surgery

Modular design workflow for 3D printable bioresorbable patient-specific bone scaffolds: extended features and clinical validation.

Preclinical assessment of a novel aspirator device for intramedullary bone graft harvesting

Lost in translation: the lack of agreement between surgeons and scientists regarding biomaterials research and innovation for treating bone defects

An innovative intramedullary bone graft harvesting concept as a fundamental component of scaffold-guided bone regeneration: A preclinical in vivo validation

Chirurg*innen vs. Wissenschaftler*innen – Mind the Gap! DKOU Science-Slam 2023: Umfragestudie zu Biomaterialien bei Knochendefekten [Surgeons vs. scientists—Mind the gap!: Survey study on biomaterials for bone defects]

How framing bias impacts preferences for innovation in bone tissue engineering

Semi-automated scaffold design workflow to facilitate clinical translation of scaffold guided bone regeneration

The development of a modular design workflow for 3D printable bioresorbable patient-specific bone scaffolds to facilitate clinical translation

Histological and Immunohistochemical Characterization of Osteoimmunological Processes in Scaffold-Guided Bone Regeneration in an Ovine Large Segmental Defect Model

Conclusion

Dr. Markus Laubach’s robust academic foundation, exceptional research achievements, successful funding track record, and dedication to clinical translation make him an excellent candidate for the Best Researcher Award. His work directly addresses critical gaps in bone defect treatments, contributing both to scientific innovation and practical healthcare advancements.

Sailee Chowdhury | Biomaterials | Best Researcher Award

Sailee Chowdhury | Biomaterials | Best Researcher Award

Prof Sailee Chowdhury, BCDA College of Pharmacy & Technology, India

Prof. Sailee Chowdhury is a distinguished academic and researcher in pharmaceutical technology with 17+ years of teaching experience 📚✨. She holds a Ph.D. in Pharmaceutical Technology and has over 11 years of postdoctoral research experience. Her work spans flavonoids, nanoparticles, tissue engineering, and sustainable practices in drug discovery 🌿🔬. Prof. Chowdhury has published extensively in reputed journals and authored several book chapters, showcasing her commitment to knowledge dissemination 📖. As Head of the Department, she leads with excellence in education and administration 🏫🎓. Her active role in conferences and institutional committees reflects her influence and dedication to research ethics and innovation 🌍💡.

Publication Profile

Scopus

Orcid

Educational Background 🎓

Prof. Sailee Chowdhury is a highly qualified academic with a Ph.D. in Pharmaceutical Technology from MAKAUT, Kolkata, awarded in 2013 🎓🔬. She holds an M.Pharm in Pharmaceutical Chemistry with First Class honors (SGPA 9) from Biju Pattnaik University of Technology (2006) 🧪📘 and qualified GATE in 2004 🎯. Her academic journey began with a B.Pharm degree (Honors) scoring 80.3% from Burdwan University in 2004, followed by stellar performances in Higher Secondary (68%, WBCHSE, 2000) and Madhyamik (87%, WBBSE, 1998) 📚🌟. Prof. Chowdhury’s consistent academic excellence forms the foundation of her illustrious career in pharmaceutical education and research 🌍📖.

Professional Experience and Contributions 💼

Prof. Sailee Chowdhury brings over 17 years of teaching experience at BCDA College of Pharmacy & Technology, Kolkata 🎓📘, where she has progressed through roles from Lecturer to Professor and currently serves as Head of the Department of Pharmaceutical Chemistry (since April 2022) 🧪🔬. Post-Ph.D., she has over 11 years of academic and research experience 🌟. She actively contributes to UG and PG education, administrative roles, NBA accreditation, and institutional committees 📊📜. A recognized academic leader, she has organized national and international seminars, served as a reviewer for reputed journals and books, and contributed extensively to pharmaceutical education 🌍💡.

Participation in Conference Seminar & Workshops 🌐

Prof. Sailee Chowdhury has actively participated in numerous national and international conferences, seminars, and workshops, serving in roles such as Joint Convenor, Evaluator, Co-chairperson, Chairperson, Panelist, and Advisory Member 🎤📚. Highlights include the 72nd Indian Pharmaceutical Congress in Nagpur, the International Conference on Drug Discovery at Brainware University 🌍💊, and multiple events organized by institutions like Jadavpur University and Amity University 🧪📖. She has chaired scientific sessions on medicinal plants and sustainable pharmaceutical practices, fostering academia-industry partnerships, and evaluating cutting-edge research, reflecting her commitment to advancing pharmaceutical education and research 🌱🔬.

Research Focus Area 🌱🧬

Prof. Sailee Chowdhury’s research spans pharmaceutical sciences, biomaterials, and sustainable innovation 🌿🔬. Her work includes the role of flavonoids and phenolics in gut microbiota modulation and combating metabolic diseases and biotic stress 🩺🍃. She advances enzymology in drug discovery 💊🧪, sustainable practices in the pharmaceutical industry 🌍⚗️, and plant-protein-based future foods 🌱🍽️. Her expertise extends to cutting-edge biomaterials, exploring nanoparticles for gene expression and osteoconductivity 🦴🧬, alginate biocomposites for drug delivery 🦠, and silk fibroin scaffolds for tissue engineering 🧵🏗️. This multidisciplinary focus aims to enhance healthcare, sustainability, and innovation, positioning her as a leader in pharmaceutical research. 🌟📘

Publication Top Notes📄✨

Flavonoids and their metabolites: Impact on gut microbiota in connection with chronic metabolic diseases

Phenolics as Shielding Counterparts from Plants to Combat Biotic Stress Mediated by Microbes and Nematodes

Enzymology in drug discovery

Sustainable Practices in the Pharmaceutical Industry: Development and Adoption

Applications of Modified Plant Protein-Based Future Foods

Nanoparticles for triggering gene expression and osteoconductivity

Biocomposites of Alginates in Drug Delivery

Silk Fibroin–Based Biomaterial Scaffold in Tissue Engineering: Present Persuasive Perspective

Conclusion

Prof. Sailee Chowdhury demonstrates a holistic profile of academic excellence, significant research contributions, and impactful teaching and leadership roles. These attributes strongly position her as a suitable nominee for the Best Researcher Award. Her focus on innovative and sustainable pharmaceutical practices adds further value to her candidacy.

Omar Khatir | Biomaterials | Best Researcher Award

Omar Khatir | Biomaterials | Best Researcher Award

Dr Omar Khatir, University of Sidi Bel Abbes, Algeria 

Dr. Omar Khatir is an accomplished researcher specializing in biomechanics and biomaterials, with a focus on medical device innovation. 🎓⚙️ Holding a Ph.D. in Mechanical Engineering, his work advances middle ear prostheses and orthopedic implants, utilizing finite element modeling, hydroxyapatite, and honeycomb structures for improved performance. 🦻🦾 Dr. Khatir has authored high-impact publications and presented at prestigious conferences like IConTES 2024 and SNIBIA 2023. 🌍📚 Proficient in tools like MATLAB, Abaqus, and SolidWorks, he bridges academia and industry through teaching, research, and production management. His contributions enhance healthcare technology and patient outcomes, cementing his status as a leader in the field. 🌟💡

Publication Profile

Orcid

Educational Background 🎓

Dr. Omar Khatir has an impressive academic foundation in mechanical engineering 🎓⚙️ from Djilali Liabès University, Sidi Bel Abbes. Currently pursuing a Ph.D. (2022–2025), his research focuses on the mechanical behavior of biomaterials for middle ear prosthesis implants. 🦻 Prior to this, he earned a Master’s degree (2019–2021), specializing in design and simulation, with a thesis on developing a torsion test bench. 🛠️ He also holds a Bachelor’s degree (2016–2019), where he analyzed performance anomalies in Wankel engines. 🔧 His academic journey began with a Baccalaureate in Math-Technics (2016), emphasizing electrical engineering. 🔌📐

Professional Experience 💼

Dr. Omar Khatir has diverse professional experience in mechanical engineering 🛠️. As a University Lecturer (2023–2024) at Djilali Liabès University, he teaches undergraduate and postgraduate courses, supervises student research, and conducts biomechanical research 🏫🔬. Previously, as a Workshop Manager (2022–2023) at the Military Clothing and Sleeping Establishment, he managed production processes, maintained quality standards, and oversaw equipment maintenance ⚙️. Between 2019 and 2022, he worked as a Freelance Mechanical Engineer, providing engineering services in automotive mechanics 🚗 and agricultural equipment maintenance 🚜. He also gained industrial experience through an internship at CMA-Sidi Bel Abbes in 2019.

International Conferences 🌐

Dr. Omar Khatir has actively participated in international conferences 🌍, presenting his research on biomaterials and medical devices. He delivered a poster presentation at the International Conference on Technology, Engineering, and Science (IConTES) 2024 in Antalya, Turkey, evaluating Polyetheretherketone (PEEK) as an alternative to titanium in middle ear implants 🦻. At SNIBIA 2023 in Algeria, he gave an oral presentation on the behavior of middle ear prostheses using finite element modeling 🧠. He also presented on biocompatible materials with hydroxyapatite coating at SDACM 2024 in Algeria.

Research Focus Area 🌱🧬

Dr. Omar Khatir focuses on biomechanics and biomaterials, with particular emphasis on medical implants. His research addresses the mechanical behavior of materials used in middle ear prostheses and orthopedic implants 🦻💪. Dr. Khatir explores finite element modeling for optimizing prosthesis performance, applying advanced material degradation techniques and studying biocompatible materials like hydroxyapatite for implants 🦠. His work aims to improve patient outcomes by enhancing implant design, particularly with honeycomb structures and multi-cellular foam technology used in prosthetics and orthopedic devices. His research significantly impacts medical device optimization for better patient quality of life.

Publication Top Notes

Enhancing pressure ulcer prevention through optimized design of a multi-cellular foam mattress

Enhancing middle ear implants: Study of biocompatible materials with hydroxyapatite coating

Enhanced orthopedic implant design for transfemoral amputation incorporating a honeycomb structure technology

Multi-objective optimization of prosthetic multi-cells foam liner

Optimizing mechanical behavior of middle ear prosthesis using finite element method with material degradation FGM in three functions

Evaluation and Comparison of the Mechanical Behaviors of a Middle Ear Prosthesis using the Finite Element Method

Conclusion 🔍

Dr. Omar Khatir is highly suitable for consideration for a Best Researcher Award based on his academic background, research achievements, practical contributions, and impact on healthcare technology. His dedication to advancing medical device technology and improving patient outcomes makes him a strong contender.

Geung-Joo Lee | Biomaterials | Best Researcher Award

Geung-Joo Lee | Biomaterials | Best Researcher Award

Prof Geung-Joo Lee, Chungnam National University, South Korea

Prof. Geung-Joo Lee is a distinguished scientist specializing in genome editing, molecular breeding, and crop improvement 🌱. With a Ph.D. in Crop and Soil Science from the University of Georgia (USA) and over two decades of experience, he serves as a professor at Chungnam National University. His groundbreaking research includes CRISPR-Cas9 technologies, functional genomics, and cultivar development for crops like watermelon, melon, and camelina. 📚 Prof. Lee has published extensively in high-impact journals and holds leadership roles in professional organizations. His innovative work addresses global challenges in food security, sustainability, and plant science, exemplifying research excellence. 🌍✨

Publication Profile

Orcid

Scopus

Educational Background 🎓

Prof. Geung-Joo Lee boasts an impressive academic foundation 🌟. He earned his Ph.D. in Crop and Soil Science from the University of Georgia, USA, in December 2000 🎓, showcasing his expertise in plant science. Prior to this, he completed a Master of Science in Horticultural Science in February 1991 and a Bachelor of Science in Horticulture in February 1989, both from the prestigious Seoul National University, Korea 🌱. These academic achievements highlight his commitment to advancing knowledge in crop science and horticulture, forming the basis for his impactful research and contributions to the field of agriculture and biotechnology 🌍.

Professional Experience and Contributions 💼

Prof. Geung-Joo Lee has held a series of prestigious academic and research positions throughout his career 🌱. Since August 2011, he has been a Professor at the Dept. of Horticulture, Chungnam National University 🏫. Prior to that, he served as an Assistant Professor at Mokpo National University from March 2009 to July 2011. He also contributed as a Senior Researcher at the Advanced Radiation Technology Institute, KAERI from 2005 to 2009, specializing in mutation breeding and genetics 🔬. His postdoctoral research at the University of Missouri and the University of Georgia further solidified his expertise in agronomy and crop science 🌾.

Research Focus Area 🌱🧬

Prof. Geung-Joo Lee’s research primarily focuses on plant genomics and crop improvement 🌱. He specializes in genome editing techniques, including engineered nucleases and transformation, to enhance flower quality, disease resistance, plant morphology, and nutritional composition 🍅. His work on cultivar development spans various horticultural crops, including turfgrass, petunia, lily, and miscanthus 🌸. Prof. Lee also explores functional genomics, examining gene mechanisms, chromosomal locations, and gene networks 🔬. He is committed to studying functional horticultural crops such as halophytes and landraces, aiming to improve sustainability and adaptability in agriculture 🌾.

Professional Organizations 🌱✨

Prof. Geung-Joo Lee is an active member of several prestigious professional organizations 🌍. He is part of the International Society for Horticultural Sciences and the National Associations of Plant Breeders, contributing to global discussions in plant science 🌱. In Korea, he holds key roles, serving as Secretary of General Affairs and Field Editor for Breeding & Genetics in the Korean Society of Horticultural Science. He is also an Associate Editor for Breeding Science of Korea 🖋️ and currently serves as the President of the Korean Society of Turfgrass Science, leading advancements in turfgrass research 🌾.

Publication Top Notes 📄✨

Leaf Area Prediction of Pennywort Plants Grown in a Plant Factory Using Image Processing and an Artificial Neural Network

Optimized Regeneration of Petunia Protoplast and Its Association with Tissue Identity Regulators

Genetic Dissection of CRISPR-Cas9 Mediated Inheritance of Independently Targeted Alleles in Tobacco α-1,3-Fucosyltransferase 1 and β-1,2-Xylosyltransferase 1 Loci

Optimization of Protoplast Isolation from Leaf Mesophylls of Chinese Cabbage (Brassica rapa ssp. pekinensis) and Subsequent Transfection with a Binary Vector

Novel genes in response to varying water deficit in oil crop Camelina sativa

Genome-wide identification, functional prediction and expression profiling of long non-coding RNAs in Camelina sativa

In vitro screening for Botrytis leaf blight resistance in Lilium species

Reduced ethylene production in tomato fruits upon CRSPR/Cas9-mediated lemads-rin mutagenesis

Conclusion🔍

Prof. Geung-Joo Lee’s extensive research portfolio, global collaborations, leadership roles, and impactful publications make him a highly suitable and deserving candidate for a Best Researcher Award. His work exemplifies innovation and excellence, with profound implications for agriculture, food security, and biotechnology.

 

Dalia Zaafar | Biomaterials | Women Researcher Award

Dalia Zaafar | Biomaterials | Women Researcher Award

Assist. Prof. Dr Dalia Zaafar, Cairo University, Egypt

Dr. Dalia Zaafar is an Assistant Professor at Modern University for Technology and Information (MTI) in Egypt, specializing in pharmacology, toxicology, and clinical pharmacy. With a Ph.D. from Cairo University, she has led impactful research on cardiovascular pharmacology and oncology. 🌍 Her work includes clinical studies, focusing on metformin and sorafenib, contributing to drug safety. Dr. Zaafar is passionate about mentoring young researchers, especially women in academia, and has presented at international conferences. 🎓 She holds certifications in clinical practice and data analysis, enhancing her role as an expert in her field. 📚

Publication Profile

Google Scholar

Orcid

Scopus

Educational Background 🎓

Dr. Dalia Zaafar holds a Ph.D. in Pharmacology and Toxicology from Cairo University (2019), with a focus on clinical studies and cardiovascular pharmacology. Her dissertation explored the efficacy and safety of dipeptidyl peptidase inhibitors versus Metformin in diabetic hypertensive patients. 🎓 She earned an M.A. in Pharmacology and Toxicology from Suez Canal University (2014), specializing in oncology and endocrinology. Dr. Zaafar also completed a Clinical Pharmacy diploma (2019-2021) in critical care and further honed her skills through a Data Analysis Professional Nano-degree (2021) and other specialized certifications in clinical pharmacology and pharmacoeconomics. 📚💻

Current Role and Focus 💼

Dr. Dalia Zaafar is an Assistant Professor at the Modern University for Technology and Information (MTI), Egypt, where she has been teaching and conducting research since 2019. 🌟 She designs experimental studies, collaborates internationally, and mentors young researchers. Additionally, she serves on the editorial boards of the Universal Journal of Pharmaceutical Research and the World Journal of Clinical Cases. 📘 Previously, she worked as a Clinical Pharmacist in critical care at Teacher’s Hospital and Abu Sower Medical Center. Dr. Zaafar has expertise in clinical pharmacy, research supervision, and interdisciplinary initiatives, fostering academic growth and innovation. 🧪👩‍🏫

Participation in Conferences 🌐

Dr. Dalia Zaafar was a speaker at the 18th International Conference of Biochemistry and Molecular Biology, held on September 16-17, 2023. 🌍 Her lecture, titled “Unravelling the Complexities of Tau Protein Dysfunction in Alzheimer’s Disease: Pathophysiology, Biomarkers, and Therapeutic Perspectives”, highlighted groundbreaking insights into the mechanisms of Alzheimer’s disease. 🧠🔬 She discussed emerging biomarkers and innovative therapeutic strategies, contributing to a deeper understanding of this critical neurodegenerative condition. Dr. Zaafar’s presentation underscored her expertise in molecular biology and her dedication to advancing research for a better future for humanity. 🌟

Research Focus Area 🌱🧬

Dr. Dalia Zaafar’s research is focused on pharmacology, toxicology, and clinical pharmacy, with a multidisciplinary approach to tackling critical health challenges. 🧪 Her studies emphasize drug safety, cardiovascular pharmacology, and oncology, exploring innovative therapeutic interventions for diseases like Alzheimer’s, Parkinson’s, colon cancer, and drug-induced toxicities. 🔬 Her work integrates molecular biology, nanotechnology, and experimental pharmacology, addressing mechanisms like tumor angiogenesis, neuroprotection, and signal pathway modulation. 🌍 Dr. Zaafar’s impactful contributions also span natural product-based therapies, nanoparticles for drug delivery, and biomarker development, making her a pioneer in advancing personalized medicine and enhancing treatment efficacy. 🌟

Publication Top Notes📚🌐

Role of metformin in suppressing 1, 2-dimethylhydrazine-induced colon cancer in diabetic and non-diabetic mice: effect on tumor angiogenesis and cell proliferation

Hesperetin mitigates sorafenib-induced cardiotoxicity in mice through inhibition of the TLR4/NLRP3 signaling pathway

Selenium nanoparticles with prodigiosin rescue hippocampal damage associated with epileptic seizures induced by pentylenetetrazole in rats

Orexin pathway in Parkinson’s disease: a review

Discovery of new 1, 3, 4-oxadiazoles with dual activity targeting the cholinergic pathway as effective anti-Alzheimer agents

Comparing the effectiveness of L-carnitine and paraffin oil in acute aluminum phosphide poisoning using predictive biomarkers and scores: a randomized controlled clinical trial

Adherence to insulin therapy among children with type 1 diabetes: reliability and validity of the Arabic Version of the 4-Item Morisky Medication Adherence Scale

Combined β-sitosterol and trimetazidine mitigate potassium dichromate-induced cardiotoxicity in rats through the interplay between NF-κB/AMPK/mTOR/TLR4 and HO-1/NADPH signaling …

Salix subserrata Bark ExtractLoaded Chitosan Nanoparticles Attenuate Neurotoxicity Induced by Sodium Arsenate in Rats in Relation with HPLC–PDA-ESI–MS …

Conclusion 🔍

Dr. Dalia Zaafar’s dedication to research excellence, her leadership in mentoring young women researchers, and her impressive body of scholarly work make her a highly suitable candidate for the Women Researcher Award. Her contributions to pharmacology, particularly in clinical studies, and her active role in global research collaborations position her as an influential figure in the academic community.