Dr. Jiang Bi | Material Degradation and Corrosion | Research Excellence Award
Yanshan University | China
Dr. Jiang Bi is an accomplished materials scientist specializing in material degradation, corrosion behavior, alloy design, and advanced additive manufacturing processes, with a strong research portfolio that integrates laser processing, selective laser melting, metal matrix composites, and microstructural engineering. His scientific contributions have earned significant global visibility, reflected in 2,046 citations drawn from 1,654 citing documents, supported by 63 published documents and an h-index of 29, demonstrating the high impact and reliability of his research across the fields of materials science and manufacturing engineering. Dr. Bi’s work spans a broad range of topics including laser melting deposition, microstructure–property relationships, high-performance aluminum alloys, grain refinement mechanisms, and defect control strategies that enhance corrosion resistance and mechanical integrity. His studies on aluminum-magnesium-scandium-zirconium alloys, TiB₂-reinforced composites, and ultrasonic-assisted laser processing have contributed important insights into densification behavior, phase evolution, strengthening mechanisms, and fatigue performance of additively manufactured metals. He has authored influential research in well-recognized journals covering optics and laser technology, materials engineering, manufacturing processes, powder metallurgy, mechanical behavior of alloys, and composite fabrication. Dr. Bi possesses extensive expertise in metallography, SEM, microhardness analysis, tensile evaluation, simulation-based material design, and advanced characterization techniques, making him a valuable contributor to both fundamental materials research and industry-driven innovation. His academic journey includes research in forming technologies, high-pressure forming, and thermomechanical treatment of tubular components, further strengthening his multidisciplinary foundation. Through dedicated laboratory leadership, collaborative project involvement, and guidance of students and young engineers, he continues to advance cutting-edge technologies in corrosion mitigation, microstructural optimization, lightweight alloy development, and laser-based manufacturing. Dr. Jiang Bi’s commitment to research excellence, innovation in material degradation and corrosion science, and contributions to modern manufacturing technologies establish him as a prominent figure in the global materials science community and a distinguished candidate for recognition in research excellence.
Profile: Scopus
Featured Publications
Bi, J. (2026). Microstructure evolution and synergistic strengthening mechanisms of wear and corrosion resistance in laser cladding fabricated TC11-xMo coatings. Tribology International.
Bi, J. (2026). Regulating microstructure and strength–ductility synergy of laser-arc hybrid additive manufactured Al-Zn-Mg-Cu alloy. Journal of Materials Processing Technology.
Bi, J. (2025). Defects and fatigue properties of LPDC-fabricated aluminum alloy wheel: Experimental and numerical simulation methods. Engineering Failure Analysis.
Bi, J. (2025). Effect of aging treatment on microstructure, mechanical properties and corrosion resistance of 2219 aluminium alloy laser welded joint. Journal of Materials Research and Technology.
Bi, J. (2025). Coordinated control of multi-region solidification in complex-shaped die-cast wheels via cooling adjustment strategies to minimize defects and enhance performance. Journal of Materials Processing Technology.