Prof Norasikin Othman | Materials Science | Best Researcher Award

Prof Norasikin Othman | Materials Science | Best Researcher Award

Prof. Dr. Norasikin Othman is a distinguished professor in the Chemical Engineering Department at Universiti Teknologi Malaysia (UTM). With a career spanning over three decades, she has made significant contributions to chemical engineering research, particularly in liquid membrane technology and solvent extraction processes. She is a passionate educator, accomplished researcher, and active professional member in renowned engineering societies.

Prof Norasikin Othman, Universiti Teknologi, MalaysiaΒ 

Profile

GOOGLESCHOLAR

ORCID

πŸŽ“ Academic Background

Prof. Dr. Norasikin Othman is a highly accomplished Chemical Engineer πŸ—οΈ with an extensive academic background from Universiti Teknologi Malaysia (UTM). She earned her PhD in Chemical Engineering πŸ§ͺ in 2006, specializing in metal recovery using emulsion liquid membrane technology. Prior to this, she obtained her Master of Engineering (M.Eng.) in Chemical Engineering βš™οΈ in 1997, enhancing her expertise in separation processes. Her journey began with a Bachelor’s degree in Chemical Engineering πŸ”¬ in 1992, building a strong foundation in industrial applications. With her vast knowledge, she has contributed significantly to research, innovation, and academic excellence. πŸš€

πŸ‘¨β€πŸ« Professional ExperienceΒ 

Prof. Dr. Norasikin Othman is a distinguished researcher and chemical engineering expert βš™οΈ with extensive experience in academic evaluations, journal reviewing, and scientific conferences 🌍. She serves as a reviewer for high-impact Q1 & Q2 journals πŸ“–, including Journal of Separation and Purification, Desalination, and Chemical Engineering Research & Design. She is also a technical evaluator panel member for major research grants, including GUP TIER 1, FRGS, and YUTP πŸ†. A sought-after invited speaker 🎀, she has shared her insights at ICoST, ICCSS, and UTM seminars. Her contributions extend to book evaluations, panel reviews, and scientific committee roles. πŸ…

πŸ† Honors & AwardsΒ 

Prof. Dr. Norasikin Othman has received numerous prestigious awards πŸ… for her contributions to chemical engineering research and innovation πŸ”¬. She has won multiple Gold, Silver, and Bronze Medals πŸ₯‡πŸ₯ˆπŸ₯‰ at INATEX, MTE, and Seoul International Invention Fair, recognizing her groundbreaking work in silver recovery, dye recovery, and high-voltage demulsification βš™οΈ. She also received the Excellence Service Award (2008, 2012) for her dedication to academia πŸŽ“. Notably, she earned the Best Award (MTE 2010) and Publication Award (2007) πŸ“–. Her Bio-Inno Awards highlight her contributions to biotechnology and applied sciences, making her a distinguished researcher in her field. πŸš€

πŸ”¬ Research Focus

Prof. Dr. Norasikin Othman specializes in separation processes βš—οΈ, with a focus on solvent extraction and liquid membrane technology 🌊. Her research aims to develop synergistic liquid membranes for removing and recovering pollutants from industrial wastewater 🚰. She explores reactive dye removal, phenol extraction kinetics, and chromium removal using eco-friendly membranes πŸƒ. Her innovative work on green liquid membrane formulation enhances metal and dye recovery, contributing to sustainable environmental solutions 🌍. By integrating advanced membrane fabrication 🏭, she addresses critical challenges in wastewater treatment, promoting cleaner industrial practices and efficient resource recovery πŸ”„.

πŸ“š Publications

Separation of silver from photographic wastes by emulsion liquid membrane system πŸ§ͺ
πŸ‘¨β€πŸ« Authors: N. Othman, H. Mat, M. Goto
πŸ“– Journal: Journal of Membrane Science 282 (1-2), 171-177 (2006)
πŸ“Š Citations: 210

Review of research progress on aluminium–magnesium dissimilar friction stir welding πŸ”©
πŸ‘¨β€πŸ« Authors: L.H. Shah, N.H. Othman, A. Gerlich
πŸ“– Journal: Science and Technology of Welding and Joining 23 (3), 256-270 (2018)
πŸ“Š Citations: 160

Performance of plastic wastes in fiber-reinforced concrete beams πŸ—οΈ
πŸ‘¨β€πŸ« Authors: F.S. Khalid, J.M. Irwan, M.H.W. Ibrahim, N. Othman, S. Shahidan
πŸ“– Journal: Construction and Building Materials 183, 451-464 (2018)
πŸ“Š Citations: 128

Easy removal of phenol from wastewater using vegetable oil-based organic solvent in emulsion liquid membrane process πŸŒ±πŸ’§
πŸ‘¨β€πŸ« Authors: N. Othman, N.F.M. Noah, L.Y. Shu, Z.Y. Ooi, N. Jusoh, M. Idroas, M. Goto
πŸ“– Journal: Chinese Journal of Chemical Engineering 25 (1), 45-52 (2017)
πŸ“Š Citations: 111

Highly selective transport of palladium from electroplating wastewater using emulsion liquid membrane process βš›οΈ
πŸ‘¨β€πŸ« Authors: N.F.M. Noah, N. Othman, N. Jusoh
πŸ“– Journal: Journal of the Taiwan Institute of Chemical Engineers 64, 134-141 (2016)
πŸ“Š Citations: 90

Mr Sicheng Wang | Smart Materials | Best Researcher Award

Mr Sicheng Wang | Smart Materials | Best Researcher Award

Mr Sicheng Wang, Beijing University of Posts and Telecommunications, China

Mr. Sicheng Wang, a graduate in Information and Computing Science from Beijing University of Posts and Telecommunications, excels in applying artificial intelligence and machine learning to energy systems. He has authored three notable papers, including one published in the SCI-indexed journal Computers and Electrical Engineering, focusing on spatio-temporal PV prediction. Recognized with multiple national awards, such as the Second Prize in Mathematical Modeling and the Bronze Award in Innovation Competitions, Mr. Wang showcases exceptional research and problem-solving skills. His work in energy management and smart grids highlights his vision for sustainable technology solutions. πŸ†βš‘πŸ“š

Publication Profile

ORCID

Academic Excellence πŸŽ“πŸ“Š

Mr. Sicheng Wang holds a degree in Information and Computing Science from Beijing University of Posts and Telecommunications, demonstrating a solid foundation in computational methods and data-driven research. His academic journey is distinguished by multiple prestigious awards, including the Second Prize in the National Undergraduate Mathematical Modeling Contest and the Bronze Award in the China International College Students’ Innovation Competition. These achievements reflect his exceptional analytical thinking, problem-solving abilities, and commitment to academic excellence. His dedication to applying advanced computational techniques makes him a standout in his field. πŸ…πŸ”¬βœ¨

Awards and Competitions πŸ†πŸ“š

Mr. Sicheng Wang has earned multiple prestigious awards in national and provincial competitions, highlighting his excellence in innovation and problem-solving. In September 2023, he secured the Second Prize in the National Undergraduate Mathematical Modeling Contest. He later achieved the Bronze Award in the China International College Students’ Innovation Competition in September 2024. Additionally, he won the Third Prize in the National Undergraduate Computer Design Contest (June 2024) and the First Prize in the Beijing Division of the Innovation Competition (July 2024). His accolades also include a Second Prize in the National Undergraduate Mathematics Contest (October 2023). πŸ…πŸ”’βœ¨

Academic Engagement πŸŽ“πŸ’Ό

He has been actively engaged in advanced studies and research in Information and Computing Science, focusing on innovative applications of artificial intelligence and machine learning. His academic involvement includes participation in high-impact research projects and national competitions, showcasing his dedication to both theoretical and practical advancements in technology. His ongoing commitment to research and learning reflects his drive for excellence in the field of computing. πŸ§ πŸ”¬πŸ“Š

Research Focusβš‘πŸ”¬

Mr. Sicheng Wang’s research focuses on the application of artificial intelligence and machine learning in energy systems and smart grids. He has authored several high-impact papers, including a study on spatio-temporal PV prediction using a convolutional-based hybrid network, published in Computers and Electrical Engineering (SCI Q3, IF 4.0). His other notable works include an AI diagnostic model presented at AUTEEE 2023 and a multi-task learning framework for medium-term load forecasting accepted at APPEEC 2024. His research addresses critical challenges in energy prediction and management, contributing to sustainable technological advancements. πŸ§ πŸ“Šβš‘

 

Tianyu Ma | Metals and Alloys | Best Researcher Award

Tianyu Ma | Metals and Alloys | Best Researcher Award

Dr Tianyu Ma, Xi’an Jiaotong University, China

Dr. Tianyu Ma is a renowned researcher in materials science, specializing in high-performance materials for aerospace applications. He holds a Ph.D. from Beijing University of Aeronautics and Astronautics and has postdoctoral experience at the National Institute for Materials Science (Japan) and Zhejiang University. Currently a professor at Xi’an Jiaotong University, his research focuses on materials for bearings and high-entropy alloys. With multiple publications in top journals like Nature and Advanced Materials, Dr. Ma’s work impacts aerospace, automotive, and energy industries, focusing on enhancing material performance in extreme environments. βœˆοΈπŸ”¬

Publication Profile

Scopus

Orcid

Educational Background πŸŽ“

Dr. Tianyu Ma holds a Ph.D. in Materials Science and Engineering from Beijing University of Aeronautics and Astronautics, where he also completed his Bachelor’s degree. His research focuses on multi-scale analysis of materials for high-performance bearings, specifically in aeroengines. These bearings endure extreme conditions like high temperatures, high speeds, and depleted oil, making them prone to failure. Dr. Ma investigates the damage mechanisms of bearing materials across macro to micro scales, aiming to understand and improve the evolution of bearing failure. His work plays a critical role in enhancing the durability and performance of aerospace components. βœˆοΈπŸ”¬

Current Role and Focus πŸ’Ό

Dr. Tianyu Ma is currently a Professor at Xi’an Jiaotong University’s Frontier Institute of Science and Technology, a position he has held since November 2017. Prior to this, he served as a Postdoctoral Researcher and Associate Professor at Zhejiang University’s Department of Materials Science and Engineering from 2006 to 2017. Additionally, Dr. Ma worked as a JSPS Foreign Postdoctor at the National Institute for Materials Science in Japan from 2011 to 2013, contributing to research in ferroic physics. His extensive academic career spans institutions in China and Japan, focusing on advanced materials for aerospace and engineering applications. πŸŽ“πŸŒ

Research Focus Area 🌱🧬

Dr. Tianyu Ma’s research primarily focuses on advanced materials for high-performance applications, particularly in aerospace and magnetic materials. His work involves multi-scale analysis of materials, such as 8Cr4Mo4V alloy, and exploring damage mechanisms through molecular dynamics simulations. He has also contributed significantly to the development of high-entropy alloys, magnetic materials, and alloys with enhanced mechanical properties like strength, ductility, and thermal expansion. His publications in Nature, Acta Materialia, and Advanced Materials reflect his deep engagement with materials science, especially in the areas of ultrahigh-strength alloys, magnetic performance, and thermally stable materials for extreme conditions. πŸ› οΈβœˆοΈπŸ§²

Publication Top NotesπŸ“„βœ¨

Enhanced magnetic performance of Fe-rich Sm2Co17-type magnets by optimizing Zr content

Rapid-thermal-process pre-treatment promoted precipitation towards strengthening hard magnetism of Sm2Co17-type magnets

Large Non‐Hysteretic Volume Magnetostriction in a Strong and Ductile High‐Entropy Alloy

Local Displacive Phase Transformation in Large-Magnetostriction Alloy Fe81Ga19

Formation of semi-coherent Zr-rich lamellar phase in 2:17-type Sm-Co-Fe-Cu-Zr magnets with high Fe content

Atomic scale understanding the periodic modulation in ferroelastic alloy Ni-Mn-Ti

Toughening Ceramics down to Cryogenic Temperatures by Reentrant Strain-Glass Transition

Origin of hard magnetism in Fe-Co-Ni-Al-Ti-Cu high-entropy alloy: Chemical shape anisotropy

Conclusion πŸ”

Dr. Tianyu Ma’s extensive academic background, innovative research, and prolific publication record make him a strong candidate for the Best Researcher Award. His work bridges fundamental material science with applied engineering, particularly in the area of multi-scale materials analysis, which is essential for improving high-performance bearings and magnets. His ongoing contributions to the development of advanced materials for challenging environments align well with the goals of this award.