Assist. Prof. Dr. Jialong Tian | Metals and Alloys | Best Innovation Award

Assist. Prof. Dr. Jialong Tian | Metals and Alloys | Best Innovation Award

Northeastern University | China

Assist. Prof. Dr. Jialong Tian is an accomplished materials scientist specializing in metals and alloys, with particular expertise in the design, processing, and performance optimization of advanced special steels. He serves as an Associate Professor at the School of Metallurgy, Northeastern University, and holds the position of Deputy Director of the Green Intelligent Special Steel Metallurgy Research Center. Dr. Tian’s research focuses on composition design, preparation technologies, and toughening mechanisms of tool steels, ultra-high-strength steels, bearing steels, and stainless steels for demanding industrial applications. His work integrates physical metallurgy, alloy design, and intelligent computing approaches to address critical challenges such as strength–toughness balance, fatigue resistance, inclusion control, and microstructural stability. He has played a leading role in translating fundamental research into industrial practice, with his innovations successfully applied in collaboration with major steel enterprises and advanced manufacturing industries, including high-end equipment and automotive sectors. Dr. Tian has led and contributed to numerous nationally competitive research and industry-driven projects, demonstrating strong capabilities in project management, problem-solving, and technology transfer. His inventive contributions are reflected in multiple authorized patents covering alloy design, electroslag remelting processes, heat treatment optimization, and data-driven performance prediction systems for special steels. In addition to his research achievements, he is actively engaged in academic service, including editorial responsibilities for international materials journals and participation in professional societies related to metal new materials. Dr. Tian’s interdisciplinary approach combines metallurgy, computational design, and industrial engineering, enabling the development of innovative, high-performance metal materials tailored for real-world applications. Through his sustained innovation, strong industry impact, and leadership in advanced steel research, Assist. Prof. Dr. Jialong Tian has established himself as a leading figure in metals and alloys research and is a highly deserving recipient of the Best Innovation Award.

Citation Metrics (Scopus)

600
500
400
200
0

Citations
541

Documents
46

h-index
14

Citations

Documents

h-index

View Scopus Profile

Featured Publications


Innovative Models for Calculating Electrical Conductivity and Viscosity of Slag at 1600 °C: A Case Study on CaF2–Al2O3–CaO–MgO–SiO2 Slag System

– Metallurgical and Materials Transactions B Process Metallurgy and Materials Processing Science, 2025

Prof. Xiangtao Hu | Metals and Alloys | Research Excellence Award

Prof. Xiangtao Hu | Metals and Alloys | Research Excellence Award

Anhui University | China

Prof. Xiangtao Hu is a distinguished researcher and academic leader whose work in metals and alloys is closely integrated with robotized intelligent manufacturing, advanced processing technologies, and optimization-driven materials engineering. As a Professor and doctoral supervisor at Anhui University, he plays a pivotal role in advancing intelligent manufacturing systems that enable high-precision processing, forming, and performance optimization of metallic materials and alloy-based components. His research expertise centers on surrogate model optimization, digital manufacturing, and intelligent control strategies that significantly enhance the efficiency, quality, and reliability of metal forming, machining, and structural component fabrication. Prof. Hu has led numerous competitive research projects at national and provincial levels, demonstrating strong leadership in translating theoretical models into practical manufacturing solutions for metallic systems used in aerospace, electronics, and advanced industrial applications. He has authored a substantial body of high-quality scientific publications and holds multiple authorized invention patents, many of which address intelligent processing, precision manufacturing, and performance enhancement of metal-based systems. In addition to his research achievements, he has contributed extensively to standardization efforts by editing national and industry technical standards, strengthening the technological foundation of intelligent manufacturing involving metals and alloys. Prof. Hu also serves as the head of an academic program in intelligent manufacturing engineering, where he actively mentors graduate students and fosters interdisciplinary collaboration between materials science, mechanical engineering, and automation. His work bridges fundamental materials behavior with data-driven manufacturing intelligence, supporting the next generation of alloy design, processing optimization, and smart production systems. Through sustained innovation, academic leadership, and impactful contributions to metal-related intelligent manufacturing technologies, Prof. Xiangtao Hu exemplifies research excellence and is a highly deserving recipient of the Research Excellence Award.

Citation Metrics (Scopus)

400
300
200
100
0

Citations
284

Documents
30

h-index
8

Citations

Documents

h-index

View Scopus Profile

Featured Publications

Dr. Muhammad Murtaza | Metals and Alloys | Excellence in Research Award

Dr. Muhammad Murtaza | Metals and Alloys | Excellence in Research Award

Absolute Pure EnviroSci Limited APEL | Hong Kong | Pakistan

Dr. Muhammad Murtaza is an accomplished materials scientist specializing in metals and alloys, with strong expertise in metallic nanostructures, functional coatings, and materials for flexible and printable electronics. His research focuses on the controllable synthesis of metal nanomaterials, including silver, copper, gold, and nickel systems, and their integration into high-performance conductive inks, strain sensors, and electronic devices. Dr. Murtaza has developed innovative synthesis strategies for nanostructured metals and metal–ceramic composites, enabling improved electrical conductivity, mechanical flexibility, and structural stability for advanced electronic applications. His work bridges fundamental materials science with applied engineering, contributing to emerging technologies in wearable electronics, smart sensors, and functional thin films. He has collaborated with leading international research groups and has held research appointments across prominent academic and industrial laboratories, where he contributed to interdisciplinary projects combining materials science, physics, and electronic engineering. In addition to metallic systems, his expertise extends to ceramic materials, two-dimensional materials, composite coatings, and piezoelectric structures, supported by extensive experience with advanced characterization techniques including electron microscopy, spectroscopy, diffraction, and scanning probe methods. Dr. Murtaza is also an experienced educator, having taught materials science and physics at undergraduate and graduate levels, and mentored student research projects in nanomaterials and electronic materials. His work demonstrates a strong commitment to scientific rigor, innovation, and practical impact, particularly in the development of metal-based functional materials for next-generation technologies. Through sustained research excellence, interdisciplinary collaboration, and technological innovation, Dr. Muhammad Murtaza has established himself as a valuable contributor to the field of metals and alloys, making him a highly deserving recipient of the Excellence in Research Award.

Citation Metrics (Scopus)

400
300
200
100
0

Citations
341

Documents
12

h-index
6

Citations

Documents

h-index

View Scopus Profile
  View Google Scholar Profile

Featured Publications

Assist. Prof. Dr. Riming Wu | Metals and Alloys | Research Excellence Award

Assist. Prof. Dr. Riming Wu | Metals and Alloys | Research Excellence Award

Shanghai University of Engineering Science | China

Assist. Prof. Dr. Riming Wu is a distinguished materials scientist specializing in metals and alloys, with a strong focus on the development and application of high-performance special alloys. He serves as an Associate Professor in materials processing and leads a research group dedicated to advanced special steels, where his work bridges fundamental materials science and industrial implementation. His researchbainitic expertise spans high-quality special steels, hot work die steels, automotive high-strength steels, and advanced alloy design for demanding service environments. Dr. Wu has demonstrated outstanding leadership in research and innovation by directing numerous competitive projects in collaboration with national programs and industrial partners, contributing significantly to the advancement and commercialization of high-wear-resistant, high-thermal-conductivity, and high-strength alloy systems. He has authored more than twenty SCI-indexed journal publications in leading international materials science journals, many as corresponding author, reflecting his strong academic influence in alloy microstructure control, precipitation behavior, and mechanical property optimization. In addition to his scholarly contributions, Dr. Wu holds multiple authorized invention patents related to special steel processing technologies, several of which have been successfully transferred to industrial-scale production, highlighting his impact on technology translation and industrial upgrading. His work has provided practical solutions for tooling steels, hot stamping steels, and extrusion die materials, supporting applications in automotive manufacturing and advanced forming technologies. Recognized for his academic rigor, innovation capacity, and commitment to industry-oriented research, Dr. Wu exemplifies excellence in metals and alloys research. His sustained contributions to high-performance alloy development, combined with mentorship and collaborative engagement, make him a highly deserving candidate for the Research Excellence Award.

Citation Metrics (Scopus)

450
300
150
0

Citations
430

Documents
29

h-index
12

Citations

Documents

h-index


View Scopus Profile

Featured Publications

Silicon in Die Steels
– Metals and Materials International, 2025

Fluctuations of Properties of Cr–Mo–V Hot Work Die Steels by Artificial Increment of Vanadium
– 2022 Shan Huang, Riming Wu (Corresponding Author), Wei Li, Na Min, Xiaocheng Li
Effect of Mo-Related Precipitation Behavior on the Strengthening and Thermal Stability of 4Cr5Mo2V Die Steel
– Journal of Materials Engineering and Performance (SCI), 2022, 31:10213–10224

Tao Hu, Riming Wu (Corresponding Author), Fangjie Li, Na Min, Wei Li

Improved Mechanical Properties by Nanosize Tungsten–Molybdenum Carbides in Tungsten-Containing Hot Work Die Steels
– Materials Science and Engineering A (SCI), 2021

Riming Wu (Corresponding Author), Wei Li, Meng Chen, Shan Huang, Tao Hu

Mr. Arif Aziz | Thermodynamics of Materials | Best Researcher Award

Mr. Arif Aziz | Thermodynamics of Materials | Best Researcher Award

Mr. Arif Aziz is a PhD student at Harbin Engineering University specializing in mechanical and power engineering with a focus on turbomachinery. He holds a Bachelor’s in Mechanical Engineering and a Master’s in Power Engineering and Engineering Thermophysics. His work explores advanced two-phase flow dynamics and working fluid mixtures in closed Brayton cycle compressors, with contributions to conference proceedings and peer-reviewed journals. His research is directed toward enhancing compressor performance and improving power cycle efficiency for applications in next-generation energy systems.

Mr. Arif Aziz | Harbin Engineering University | China

Profile

SCOPUS

Education

Mr. Aziz completed his Bachelor’s degree in Mechanical Engineering, followed by a Master’s degree in Power Engineering and Engineering Thermophysics, where he focused on aerodynamic analysis and optimization of compressors. Currently, he is pursuing his PhD at Harbin Engineering University in the same field, concentrating on developing optimized compressor designs for binary gas mixtures like helium-xenon and helium-nitrogen. His educational journey reflects a progressive specialization in fluid mechanics and turbomachinery design, providing a solid academic foundation for high-level research.

Experience

Mr. Arif Aziz has developed extensive experience in the field of turbomachinery and advanced power cycles through both academic research and practical design work. His expertise lies in two-phase flow analysis, compressor optimization, and the use of binary gas mixtures such as helium-nitrogen and helium-xenon for closed Brayton cycle applications. He has completed research projects on axial flow compressor optimization and is currently engaged in the design and performance evaluation of compressors for advanced energy systems. His work has been presented at academic conferences and published in peer-reviewed journals, contributing to the advancement of thermal engineering knowledge.

Research Contributions

Mr. Aziz has completed a research project on the optimization of an axial flow compressor and is presently engaged in a project investigating the thermodynamic and aerodynamic behavior of binary gas mixtures in closed Brayton cycle compressors. His research aims to enhance efficiency, stability, and power density in advanced energy systems. With publications in international journals such as Case Studies in Thermal Engineering and Journal of Hydrogen Energy, he contributes valuable insights into energy-efficient turbomachinery systems.

Research Focus

Mr. Aziz’s primary research focus lies in understanding and improving two-phase flow dynamics and working fluid interactions in compressors for closed Brayton cycles. His studies target helium-based mixtures to optimize cooling, efficiency, and power density, which are vital for nuclear and solar-thermal power generation. By combining experimental and computational techniques, he aims to deliver novel compressor designs that address energy efficiency challenges in next-generation power systems.

Publications

Optimization of an Axial Flow Compressor Cooling: A Numerical Study on Enhanced Wet Compression Technology
Authors: Arif Aziz, Ghulam Ishaque, Naseem Ahmad, Muhammad Haris

CO2 Capture Using Mixed Amines: Experimental DFT Investigation with Focus on Improvements in Cyclic Efficiency and NO Interference
Authors: Muhammad Haris, Arif Aziz, Muhammad Sohail, Waseem Sardar

Aerodynamic Performance Investigation of an Axial Flow Compressor Under Water Ingestion
Authors: Ghulam Ishaque, Qun Zheng, Naseem Ahmad, Arif Aziz

The Influence of the Casing Grooves on the Performance of an Axial Compressor
Authors: Naseem Ahmad, Ghulam Ishaque, Arif Aziz, Qun Zheng

Adaptive Multiplexing Technique for Mobile Networks Based on SNR
Authors: Abdul Ahad Dilshad, Muhammad Irfan, Adil Malik, Arif Aziz

Conclusion

Mr. Arif Aziz is an emerging researcher with a strong academic background, focused research direction, and contributions to improving energy system performance through turbomachinery innovations. His work is impactful for future clean energy solutions and demonstrates the potential for broader applications in advanced power cycles. These qualities collectively make him a suitable and competitive candidate for the Best Researcher Award.

Dr. Jingna Liu | Thermodynamics of Materials | Best Researcher Award

Dr. Jingna Liu | Thermodynamics of Materials | Best Researcher Award

Dr. Jingna Liu is an Assistant Professor at Sun Yat-sen University, with a doctoral degree in Soil Science from the University of Copenhagen. Her academic foundation bridges advanced environmental science and agricultural sustainability. After completing her Ph.D., she began her research and teaching career in China, focusing on soil fertility and agricultural waste valorization. Her professional trajectory demonstrates a commitment to improving nutrient management and promoting sustainable agriculture through interdisciplinary and applied research.

Dr. Jingna Liu | Sun Yat-Sen University | China

Profile

SCOPUS

Education

Dr. Liu earned her Ph.D. in Soil Science from a leading European institution, where she specialized in nutrient cycling and soil health. Her education integrated core aspects of environmental sustainability, microbiology, and agricultural chemistry. The combination of European academic standards and applied agricultural focus equipped her with both theoretical insight and practical skill, enabling her to address complex challenges in agricultural waste management and soil resource efficiency.

Experience

Dr. Liu has developed her academic career as an Assistant Professor at Sun Yat-sen University. She has completed and led multiple research projects related to agricultural waste recycling and soil fertility enhancement. Her experience includes both academic research and consultancy collaborations with industry stakeholders, contributing to real-world applications of her findings. With an active presence in both research and academic mentoring, she plays a significant role in advancing sustainable agricultural practices.

Contribution

Dr. Jingna Liu’s research has made pivotal contributions to sustainable agriculture by optimizing the thermal drying process of solid digestate. Her work uncovered the fundamental mechanisms of nitrogen transformation and demonstrated that acidification prior to drying significantly reduces ammonia (NH₃) volatilization while enhancing plant-available nitrogen. This innovation boosts the fertilizer value of dried digestate, enabling its conversion into a nutrient-rich organic fertilizer. By improving nutrient retention and reducing dependency on synthetic fertilizers, her findings support circular agriculture, waste valorization, and improved environmental stewardship.

Research Focus 

Dr. Liu’s research focuses on the recycling and utilization of agricultural solid waste, soil fertility enhancement, and nitrogen use efficiency. She investigates thermal drying and acidification processes to optimize nitrogen retention and reduce environmental emissions. Her work emphasizes the transformation of organic waste into effective fertilizers, offering solutions for improving soil health and reducing dependence on chemical inputs. Her studies provide scientific insights that support practical applications in sustainable farming systems.

Publications

Effect of Acidification on Nitrogen Transformation of Solid Digestate During Thermal Drying
Authors: Weimin Wu, Jingna Liu
Journal: Published July 2025

Acidification Prior to Drying of Digestate Solids Affects Nutrient Uptake and Fertilizer Value When Applied to Maize
Authors: Jingna Liu, Dorette Sophie Müller-Stöver, Lars Stoumann Jensen
Journal: Published September 2024

Comparison of Alum and Sulfuric Acid to Retain and Increase the Ammonium Content of Digestate Solids During Thermal Drying
Authors: Jingna Liu, Lars Stoumann Jensen, Dorette Müller-Stöver
Journal: Published June 2021

Acidified Animal Manure Products Combined with a Nitrification Inhibitor Can Serve as a Starter Fertilizer for Maize
Authors: Iria Regueiro, Peter Siebert, Jingna Liu, Lars Stoumann Jensen
Journal: Published December 2020

Methane Emission and Soil Microbial Communities in Early Rice Paddy as Influenced by Urea-N Fertilization
Authors: Jingna Liu, Huadong Zang, Heshui Xu, Zhaohai Zeng
Journal: Published December 2019

Increased Retention of Available Nitrogen During Thermal Drying of Solids of Digested Sewage Sludge and Manure by Acid and Zeolite Addition
Authors: Jingna Liu, Andreas de Neergaard, Lars Stoumann Jensen
Journal: Published September 2019

Conclusion

Dr. Jingna Liu is a promising and impactful researcher contributing to the advancement of sustainable agriculture through innovative research on nutrient recycling and soil fertility. Her scientific insights into nitrogen retention and emissions reduction place her as a suitable candidate for the Best Researcher Award. With expanded global engagement and broader application of her findings, she is well-positioned to become a leading figure in environmental soil science and sustainable waste management.

Dr. Swami Nath Maurya | Thermodynamics of Materials | Best Researcher Award

Dr. Swami Nath Maurya | Thermodynamics of Materials | Best Researcher Award

Dr. Swami Nath Maurya is a Postdoctoral Researcher at the National Chin-Yi University of Technology (NCUT) in Taiwan, specializing in thermal management and precision manufacturing. He holds a Ph.D. in Precision Manufacturing, a Master’s in Green Energy Technology, and a B.Tech. in Instrumentation and Control Engineering. With 13 SCIE-indexed journal publications and an h-index of 5, Dr. Maurya merges experimental research with AI modeling to optimize energy and material efficiency. His multidisciplinary expertise spans semiconductors, machine tools, and advanced thermal systems.

Dr. Swami Nath Maurya | National Chin-Yi University of Technology | Taiwan

Profile

SCOPUS

ORCID

GOOGLESCHOLAR

Education 

Dr. Maurya’s academic journey is marked by a solid foundation in engineering and sustainability. He earned his B.Tech. in Instrumentation and Control Engineering, followed by a Master’s in Green Energy Technology, which underpins his commitment to sustainable development. He then pursued a Ph.D. in Precision Manufacturing, focusing on intelligent process optimization. This academic progression reflects his strong theoretical understanding and applied engineering acumen in the areas of energy efficiency, thermal modeling, and manufacturing systems.

Experience

Dr. Maurya has worked extensively as a postdoctoral researcher, contributing to thermal management in machine tool systems, semiconductor crystal growth (Czochralski process), and graphene-enhanced membranes. He has authored studies on AI-driven optimization, multiobjective cooling, and microfluidic heat sink design. His work is known for solving practical engineering problems with academic rigor, and he collaborates across Taiwan and India. Despite having no current patents or editorial roles, his contributions stand out for their technical depth and industrial relevance.

Contributions 

Dr. Swami Nath Maurya has made significant contributions to thermal management, semiconductor process optimization, and sustainable material engineering. His research includes the Czochralski crystal growth process, graphene-based membranes, and hybrid cooling systems for enhanced energy efficiency and system reliability. His 13 SCIE-indexed publications (h-index: 5) reflect innovation at the intersection of AI, thermal modeling, and advanced manufacturing. From machine tool spindle cooling to microfluidic heat sinks, his work promotes intelligent, eco-conscious engineering practices for future-ready industries.

Research Focus 

Dr. Maurya’s research centers on thermal deformation modeling, energy-efficient systems, and AI-enhanced process optimization. His work targets complex engineering challenges in machine tools, semiconductor manufacturing, and sustainable material processing. He employs finite element methods, Monte Carlo simulations, and neuro-fuzzy inference systems to optimize system efficiency. By bridging artificial intelligence, green energy, and manufacturing, he is contributing to next-generation, eco-conscious industrial solutions.

Publications

Performance and Economic Enhancement of a Dewaxing Casting Process Using a Heat Pump Drying System
Authors: Win-Jet Luo, Amir Reza Ansari Dezfoli, Swami Nath Maurya, Bivas Panigrahi, Pei-Tang Wang
Journal: Case Studies in Thermal Engineering (2025)

Performance Analysis of Energy Recovery Membrane Coated with Graphene Oxide
Authors: Win Jet Luo, Prateek Negi, Swami Nath Maurya, Bivas Panigrahi, Janet Syah Putra Telaumbanua
Journal: Materials Research Express (2025)

Efficient Heat Dissipation with Hybrid Composite-Based Microfluidic Heat Sinks in Flexible Electronics
Authors: Pramod Vishwakarma, Swami Nath Maurya, Win Jet Luo, Bivas Panigrahi
Journal: Journal of Micromechanics and Microengineering (2025)

Optimization of Machine Tool Spindle Cooling for Enhancement of Thermal Prediction Accuracy and Energy Efficiency
Authors: Cheng-Kai Huang, Tsung-Chia Chen, Kun-Ying Li, Yuan-Hong Tsai, Swami Nath Maurya
Journal: International Journal of Precision Engineering and Manufacturing-Green Technology (2025)

Data-Driven Approach for Optimizing the Czochralski Process and Predictive Modeling: A Finite Element and Machine Learning Analysis
Authors: Swami Nath Maurya, Amir Reza Ansari Dezfoli, Li-Shang Lin
Journal: The International Journal of Advanced Manufacturing Technology (2025)

Process Parameter Optimization in Czochralski Growth of Silicon Ingots: A Monte Carlo-Finite Element Coupled Model
Authors: Amir Reza Ansari Dezfoli, Swami Nath Maurya, Zary Adabavazeh, Yi-Jen Huang
Journal: The International Journal of Advanced Manufacturing Technology (2025)

Impact of Top Cooling on Defect Suppression in Large-Scale Silicon Ingot Manufacturing
Authors: Yi-Jen Huang, Swami Nath Maurya, Amir Reza Ansari Dezfoli
Journal: The International Journal of Advanced Manufacturing Technology (2025)

Dr SOOK SAM LEONG | Materials Science | Best Researcher Award

Dr SOOK SAM LEONG | Materials Science | Best Researcher Award

Dr. Sook Sam Leong 🎓🩻 is a Senior Lecturer and Clinical Researcher at Universiti Teknologi MARA, Malaysia. With over 20 years of experience in diagnostic imaging, she specializes in medical ultrasound, renal imaging, radiation safety, and AI in radiology 🧠🔬. Her impactful work includes shear wave elastography, MRI training in VR, and fatty liver assessment via ultrasound 🧪💻. She has authored 20+ peer-reviewed articles in top journals 📚🌍 and received multiple awards 🏆 for innovation and scientific merit. A passionate educator and grant leader, Dr. Leong advances clinical imaging through research, mentorship, and international collaboration 🤝✨.

Dr SOOK SAM LEONG, UNIVERSITI TEKNOLOGI MARA, Malaysia

Profile

SCOPUS

ORCID

GOOGLESCHOALR

🎓 Education

Dr. Sook Sam Leong 🎓 has a distinguished academic background in medical imaging and ultrasound. She earned her PhD in Medical Ultrasound with Distinction from the University of Malaya in 2020 🥇, following her Master in Medical Science (Ultrasound) in 2013. Her academic journey began with a Diploma in Medical Radiography (2003) 🏥 from the same university. In 2007, she completed a B.Sc. in Radiographic Science at the University of Teesside with First Division Honors 🏆. She also trained at Jefferson Ultrasound Research and Education Institute (JUREI) in 2004, completing a Basic Abdominal Ultrasound Course 🔬📸.

👩‍⚕️Experience

Dr. Sook Sam Leong brings over 20 years of multidisciplinary clinical and academic experience in diagnostic imaging 🏥🩻. Starting as a Senior Radiographer at University of Malaya Medical Centre (2003–2021) and now a Senior Lecturer at Universiti Teknologi MARA (UiTM), she has specialized in ultrasound, CT, MRI, radiation protection, and digital radiography 💻🔬. She has served on ethics, program planning, and medical technology committees 🧠📊, and contributed as a consultant for Philips Ultrasound and Malaysia’s Ministry of Health. An accomplished educator 🎓, she has taught ultrasound and CT at leading universities, mentoring the next generation of radiology professionals 🧑‍🏫🌟.

🏆 Awards 

Dr. Leong has earned multiple prestigious awards including the 🥇 Best Innovation Award (UiTM, 2023), 🥈 Best Researcher Award (2022), and 🎖️ Outstanding Scientific Merit Award (AACRT, 2023). Her accolades reflect her excellence in clinical imaging, innovation, and scientific impact. She also secured competitive research funding 💰, leading the FRGS grant (RM108,600, 2023–2025) and multiple university-backed projects. Her recognition spans oral presentations, poster excellence, and quality improvement awards, demonstrating sustained excellence across academic, clinical, and translational domains 🧪📊👩‍⚕️.

🖥️ Expertise 

Dr. Leong is a highly skilled expert in Ultrasound 🧪, Computed Tomography (CT) 🖥️, and General Radiography 📷, with over two decades of experience in clinical diagnostics and medical education. Her work in ultrasound imaging includes cutting-edge research in shear wave elastography and attenuation techniques. She applies CT and radiographic methods in evaluating complex clinical cases, including renal and hepatic conditions 🩺🧬. Her commitment to precision, safety, and innovation in radiological sciences positions her as a leading voice in advancing diagnostic imaging technologies for enhanced patient care and training 🧠🌍.

🩻Contributions

Dr. Sook Sam Leong has significantly advanced ultrasound elastography, AI-assisted diagnostics, and clinical imaging 📊🧠. With over 20 WOS-indexed publications 📚 and an h-index of 11 📈, her research has revolutionized imaging for kidney disease, musculoskeletal disorders, and forensic applications 🧬🦴. As FRGS principal investigator, she explores stiffness biomarkers via shear wave elastography 💡. Her excellence is recognized with awards like AACRT 2025 Best Paper and UiTM Innovation Award 2023 🏅. Dr. Leong continues to impact global health through AI integration, collaborative research, and postgraduate mentorship 🌍🎓.

🔬 Research Focus

Dr. Sook Sam Leong’s research is centered on enhancing diagnostic accuracy using Ultrasound and Computed Tomography (CT). Her work explores cutting-edge methods like shear wave elastography for tissue stiffness evaluation, attenuation imaging for fatty liver detection, and the integration of AI and machine learning in radiological interpretation 🤖📊. She also investigates radiation safety, forensic imaging, and VR-based MRI education 🛡️🧍‍⚕️. Bridging clinical application with research, her contributions support early disease detection, patient safety, and medical education, driving innovation in non-invasive diagnostics and multidisciplinary healthcare delivery 🌍💡📈.

📚 Publications

2D shear wave elastography for the assessment of quadriceps entheses—a methodological study
👩‍🔬 SS Leong, JHD Wong, FI Rozalli, F Yahya, YC Tee, LSM Yamin, …
📘 Skeletal Radiology, 2024, Vol. 53(3), pp. 455–463

Application of entropies for automated diagnosis of abnormalities in ultrasound images: A review
👩‍🔬 Y Hagiwara, VK Sudarshan, SS Leong, A Vijaynanthan, KH Ng
📘 Journal of Mechanics in Medicine and Biology, 2017, Vol. 17(07), Article 1740012

Shear wave elastography in chronic kidney disease – the physics and clinical application
👩‍🔬 KH Ng, JHD Wong, SS Leong
📘 Physical and Engineering Sciences in Medicine, 2024, Vol. 47(1), pp. 17–29

THE ROLE OF SHEAR WAVE ELASTOGRAPHY IN POST-MORTEM CANINES
👩‍🔬 SS Leong, WK Ong, RR Azman, MNM Shah, A Vijayananthan, SF Lau
📘 Journal of Medical Imaging and Radiation Sciences, 2023, Vol. 54(3), Supplement S9

Dispersion patterns of scattered radiation exposure on phantom in CT fluoroscopy
👩‍🔬 SS Leong, N Azman, A Vijayananthan, JHD Wong
📘 Radiation Physics and Chemistry, 2025, Vol. 235, Article 112810

Defining normal enthesis stiffness range in a healthy adult population
👩‍🔬 MKJ Mahazer, SS Leong, JHD Wong, FI Rozalli, F Yahya, YC Tee, …
📘 British Journal of Radiology, 2025, Vol. 98(1167), Article 469–474

Quantifying canine tissue stiffness change patterns using shear-wave elastography: implications for time of death estimation
👩‍🔬 WK Ong, SS Leong, RR Azman, MN Md Shah, A Vijayananthan, SF Lau
📘 Australian Journal of Forensic Sciences, 2024, pp. 1–14

Dr Gevorg Gevorg | Thermodynamics of Materials | Best Researcher Award

Dr Gevorg Gevorg | Thermodynamics of Materials | Best Researcher Award

Dr. Gevorg Avágovich Grigorian 🎓📐 is a senior researcher at the Institute of Mathematics, National Academy of Sciences of Armenia 🇦🇲. His research expertise lies in ordinary differential equations (ODEs), with a special focus on oscillation theory, stability analysis, and Wiener–Hopf integral equations. 🧮🧠 He has authored over 15 peer-reviewed publications in esteemed journals such as Mathematical Notes and Monatshefte für Mathematik 📝📚. Dr. Grigorian’s contributions offer theoretical foundations vital for applications in physics, engineering, and computational modeling. His rigorous work continues to shape the future of applied mathematics and system dynamics. 🌐📊🔍

Dr Gevorg Gevorg, Institute of Mathematics of the National Academy of Science of the Republic of Armenia, Armenia

Profile

SCOPUS

Education 🎓

Dr. Gevorg Avágovich Grigorian 🎓📘 earned his advanced degrees in Mathematics from prestigious institutions in Armenia, specializing in ordinary differential equations, stability theory, and integral equations. 🧠📐 His academic foundation was built through rigorous training in classical analysis, linear algebra, and functional methods. 🏛️📊 As a product of Armenia’s elite mathematical education system 🇦🇲, Dr. Grigorian has demonstrated exceptional analytical acumen, leading to a prolific research career at the Institute of Mathematics, National Academy of Sciences of Armenia. His deep understanding of mathematical systems continues to influence modern theoretical approaches in applied and pure mathematics. 📚🔬🌍

Experience ✍️

Dr. Gevorg Avágovich Grigorian 📘🧠 has extensive experience as a mathematical researcher at the Institute of Mathematics, National Academy of Sciences of Armenia 🇦🇲. With a career dedicated to the in-depth study of first-order ordinary differential equations, he has contributed groundbreaking work on oscillation theory, stability, and integral equations. 🧮🔍 He has published in top journals like Mathematical Notes and Monatshefte für Mathematik, and is recognized for his rigorous analytical methods. 📈✍️ Dr. Grigorian’s expertise supports interdisciplinary applications across engineering, physics, and computational modeling, marking him as a key figure in mathematical innovation. 🌍📐

Research Focus 🔍

Dr. Grigorian’s research is rooted in ordinary differential equations (ODEs), with a sharp focus on oscillation theory, stability analysis, and integral equations such as the Wiener–Hopf type. 🧮 His recent work investigates solvability criteria for complex systems, aiming to bridge abstract mathematical theory with applications in physics, engineering, and signal processing. ⚙️📊 He develops new analytical frameworks for understanding nonhomogeneous systems, Riccati equations, and linear dynamical models. Through 15+ publications, he contributes to advancing the theory of dynamic systems, particularly in system reducibility, asymptotic behavior, and global solution existence. 🌐🔍📐

Publication 📘

Solvability Conditions for a Class of Wiener–Hopf Integral Equations of the First Kind 🧮📘

✍️ Author:
Gevorg Avágovich Grigorian 👨‍🏫

📚 Journal:
Mathematical Notes, 2025 📰📐

Dr Ronit Das | Metals and Alloys | Best Researcher Award

Dr Ronit Das | Metals and Alloys | Best Researcher Award

Dr. Ronit Das is a dynamic and forward-thinking materials engineer whose expertise lies in advanced microelectronics packaging, solder reliability, and interconnect technologies. With a Ph.D. in Industrial and Systems Engineering from Binghamton University (SUNY), his work bridges the gap between academic rigor and industrial application. Currently employed at Apple Inc. as an IC Package Integration Engineer, Dr. Das has previously contributed to leading tech companies like Intel, AMD, and Applied Materials. His academic and professional trajectory highlights a deep commitment to reliability science, microscale fatigue, and innovative materials for next-generation electronic systems.

Dr Ronit Das, Binghamton University, United States

Profile

GOOGLESCHOLAR

ORCID

SCOPUS

🎓 Education

Dr. Ronit Das holds a strong academic foundation in engineering and materials science. He earned his Ph.D. in Industrial and Systems Engineering from Binghamton University – SUNY (2020–2023), where his dissertation focused on Pb-free SnAgCu-Bi solder joints and their fatigue damage properties ⚙️📉. He completed his M.S. in the same field at Binghamton (2018–2019), researching intermetallic morphology and void formation in micro-joints 🔬📊. His academic journey began with a B.E. in Mechanical Engineering from the University of Mumbai (2011–2015), where he graduated with distinction 🎯📚. His education blends mechanics, reliability, and materials innovation 🧠🛠️.

🧑‍💼 Experience

Dr. Ronit Das brings a wealth of experience across academia and industry in advanced packaging, reliability engineering, and materials science. At Apple Inc. 🖥️📦, he drives innovative IC packaging from concept to high-volume manufacturing. Previously at Applied Materials 🧪🔬, he focused on failure analysis and PVD coatings. His doctoral research at Binghamton University 🎓🔧 involved solder joint fatigue, intermetallic evolution, and thermal reliability. With prior engineering roles in India 🌏⚙️, he also worked in product development and industrial safety. His expertise spans flip-chip, 2.5D/3D packaging, electromigration, and finite element modeling 🛠️📊, making him a well-rounded engineer and researcher.

🛠️ Technical Skills

Dr. Ronit Das possesses an exceptional technical portfolio in reliability testing 🧪, including fatigue, shear, vibration, and thermal cycling analysis 🔄. He is proficient in advanced failure analysis techniques such as SEM, EBSD, EDX, CT, and AFM 🔬🧠. His hands-on expertise includes thin-film deposition, non-destructive testing, and metallographic processing 🧱⚙️. He is skilled in simulation and data tools like MATLAB, ANSYS, JMP, and SolidWorks 📊💻. With strong competencies in DFM, FMEA, and packaging design, he consistently applies analytical thinking, problem-solving, and statistical methodologies to optimize microelectronic systems and hardware reliability 🔧📐📈.

🏆 Leadership

Dr. Ronit Das has demonstrated exceptional leadership and academic excellence throughout his career. He served as the President of the Surface Mount Technology Association (SMTA) at Binghamton University, where he led technical and professional development initiatives 📡🤝. He is also an esteemed member of Alpha Pi Mu, the Industrial Engineering Honor Society, reflecting his high academic standing 🎓📘. Additionally, Dr. Das was the Vice Chair for Graduate Student Services at ASQ World Headquarters, where he advocated for student engagement in quality and reliability sciences 🌍🧪. These recognitions showcase his dedication to leadership, innovation, and community building 💼⭐.

🎤 Conference Presentation

Dr. Ronit Das has actively presented his research on low-temperature solder joint reliability and interconnect durability at prestigious international conferences. His work at the Pan Pacific Microelectronics Symposium (2023) focused on optimizing solder fatigue life under varying stress conditions ⚙️🔩. At the GRC-SRC meetings (2020–2022), he showcased novel Pb-free soldering approaches to reduce warpage and enhance lifecycle performance 🧪📉. Additionally, he delivered key insights on the mechanical deformation and damage evolution of micro-joints at elevated temperatures 🔍🔥. These presentations underline his expertise in advanced packaging reliability, materials behavior, and interconnect engineering 💻🛠️📦.

🔬 Research Focus 

Dr. Ronit Das focuses on advancing reliability engineering and electronic packaging technologies, particularly involving low-temperature Pb-free solder systems, intermetallic morphology, and micro-joint fatigue analysis. His research integrates experimental mechanics with materials science, using techniques such as electron microscopy, thermal cycling, and finite element modeling to investigate failure mechanisms in SnAgCu, SnBi, and hybrid solder joints. He aims to enhance the durability and performance of flip-chip, 2.5D/3D architectures, and fine-pitch interconnects under harsh operational environments. His innovations are key to improving the thermal-mechanical stability, electromigration resistance, and manufacturing efficiency of next-gen electronic systems.

📚 Publications

Comparing/Optimizing Actual Solder Fatigue Life

Author: Ronit Das
Conference: 2023 Pan Pacific Microelectronics Symposium (Jan 2023)

Early Transient Creep of Single Crystal SnAgCu Solder Joints

Authors: Ronit Das; Sanoop Thekkut; Rajesh Sharma Sivasubramony; Thaer Alghoul; Atif Mahmood; Shantanu Joshi; Carlos Arroyo; Gaurav Sharma; Peter Borgesen
Journal: Journal of Materials Science: Materials in Electronics (June 2022)

Understanding and Preventing Cu–Sn Micro Joint Defects Through Design and Process Control

Authors: Ronit Das et al.
Journal: Journal of Applied Electrochemistry (Oct 2021)

Feasibility of a Low Temperature Soldering Approach

Author: Ronit Das
Conference: TechCon – Semiconductor Research Corporation (Sept 2021)

Reliability of Micro-Joints Formed by a Low Temperature Soldering Approach

Author: Ronit Das
Conference: TechCon – Semiconductor Research Corporation (Sept 2021)

Sporadic Voiding in Cu-Sn Micro-Joints: Understanding and Control

Author: Ronit Das
Conference: TechCon – Semiconductor Research Corporation (Sept 2021)

Strength and Isothermal Fatigue Resistance of SnBi/SnAgCu Joints Reflowed at Low Temperatures

Authors: Ronit Das; Manu Yadav; Thaer Alghoul et al.
Journal: Journal of Electronic Packaging (Sept 2021)

Effect of Intermetallic Morphology Evolution on Void Formation in Ni/Sn/Ni Micro Joints

Author: Ronit Das
Conference: IEEE Electronic Components and Technology Conference (ECTC) (Aug 2020)