Prof Junping LIU | Fuzhou University | Best Researcher Award

Prof Junping LIU | Fuzhou University | Best Researcher Award

Prof. Junping Liu is a prominent figure in civil and structural engineering, currently serving as a Professor at the College of Civil Engineering, Fuzhou University, China. With a Ph.D. in Bridge and Tunnel Engineering from Chang’an University, his work integrates cutting-edge research in composite bridge structures, ultra-high performance concrete (UHPC), and structural innovation. Prof. Liu has an extensive track record of academic leadership, numerous publications in high-impact journals, and recognition through national scientific achievement awards. His research has significantly advanced both theoretical frameworks and practical applications in modern bridge engineering.

Prof Junping LIU, Fuzhou University, China

Profile

SCOPUS

🎓 Education 

Prof. Junping Liu holds a Ph.D. in Bridge and Tunnel Engineering from Chang’an University (2006–2009), where he specialized in advanced structural systems for infrastructure 🏗️🎓. He earned his M.S. in Structural Engineering from Changsha University of Science and Technology (2002–2005), focusing on composite structures and load-bearing behavior 📐🔬. His academic journey began with a diploma from the College of Civil Engineering and Architecture, Jiangxi Science & Technology Normal University (1995–1998), laying a solid foundation in civil engineering fundamentals 🧱📏. This educational progression has shaped his expertise in modern bridge design and engineering innovation 🌉💡.

🏛️ Experience 

Prof. Junping Liu brings over two decades of expertise in civil and structural engineering 🏗️📐. He is currently a Professor at Fuzhou University (2021–present) and previously served as Associate Professor (2013–2020) and Assistant Professor (2010–2013) in the same department 🎓🏛️. From 2017–2018, he was a Visiting Scholar at the University of Toronto, expanding his global research outlook 🌍📚. Earlier in his career, he worked as a Civil Engineer at the An’fu County Construction Bureau (1998–2002), gaining valuable practical experience in infrastructure development and municipal projects 🏢🛠️. His career blends academic leadership with real-world engineering impact.

🏆 Award 

Prof. Junping Liu has received prestigious provincial awards for his groundbreaking work in bridge engineering and composite structures 🏗️📐. In 2012, he was honored with the Fujian Provincial Award for Achievement in Science and Technology for his research on the theory and application of steel–concrete composite bridge structures 🔩🧱. Earlier, in 2010, he received the Gansu Provincial Award for his innovative contributions to the design and performance of rectangular steel tube trusses 📊🔧. These accolades reflect his leadership in developing sustainable, high-performance infrastructure solutions that shape modern civil engineering 🌉🏆.

📘 Book 

Co-authored by Prof. Junping Liu, this book offers a comprehensive overview of concrete-filled steel tubular (CFST) arch bridges, a key innovation in modern bridge engineering 🌉🧱. Published by Springer in 2022, it explores the mechanical behavior, design methods, construction techniques, and performance evaluation of CFST structures 🛠️📐. It also presents experimental results, numerical simulations, and case studies that demonstrate the durability and load-carrying capacity of these composite systems 📊🧪.

🔬 Research Focus

Prof. Junping Liu’s research focuses on advanced structural systems in civil engineering, with an emphasis on concrete-filled steel tube (CFST) arch bridges and composite bridge technologies 🌉🔩. He explores the behavior, design, and durability of ultra-high performance concrete (UHPC) for next-generation infrastructure 🧱⚙️. A key area of his work includes the rehabilitation and strengthening of aging bridges, contributing to sustainable and resilient engineering practices 🛠️♻️. Through experimental analysis and field applications, his studies enhance the safety, efficiency, and innovation of long-span bridge systems across various environments 🌍🔬.

📚 Publications

Flexural Behavior of Steel-UHPC-NC Composite Girders with Different UHPC-NC Interface Treatments

Authors: Jing-Wei Zhu, Yu Pan, Junping Liu, Mostafa Fahmi Hassanein, Hai-Ting Li
Journal: Journal of Bridge Engineering (2025)

Experimental Study on Punching Shear Behavior of Ultra-High-Performance Concrete (UHPC) Slabs

Authors: Junping Liu
Journal: Buildings (2025)

Design Principles and Technological Development of Concrete-Filled Steel Tube Composite Bridges (Review Article)

Authors: Junping Liu

Trial Design of Concrete Arch Bridge with UHPC Butterfly Web

Authors: Liu Junping, Xie Yunpeng, Xiong Shiwei, Wang Daolin, Chen Bao-Chun
Journal: Journal of Chang’an University (Natural Science Edition) (2025)

Study on Vehicle-Bridge Coupling and Impact Factor of the Wumengshan Bridge

Authors: Junping Liu

 

Assist. Prof. Dr Yousef Moradi | Materials Science | Material Scientist Award

Assist. Prof. Dr Yousef Moradi | Materials Science | Material Scientist Award

Dr. Yousef Moradi is an accomplished epidemiologist and lecturer with a B.Sc. in Public Health (2013), M.Sc. in Epidemiology (2015), and Ph.D. in Epidemiology (2020) from Iran University of Medical Sciences 🎓🔬. His Ph.D. research explored the transmission of ESBL-producing E. coli in the environment and food chain 🧫🌍. He has supervised numerous theses on infectious and chronic diseases and currently serves at Kurdistan University of Medical Sciences 🏥📊. Recognized among the top 1% most cited researchers globally 🌐📈, Dr. Moradi’s work bridges public health, microbiology, and data-driven disease prevention strategies.

Assist. Prof. Dr Yousef Moradi, Kurdistan University of Medical Sciences, Iran

Profile

GOOGLESCHOLAR

🎓 Education 

Dr. Yousef Moradi earned his Ph.D. in Epidemiology (2016–2020) from Iran University of Medical Sciences, ranked 3rd nationally in medical education 🎓🏥. His dissertation focused on the transmission of extended spectrum β-lactamase (ESBL) producing E. coli across environmental, food, and human chains 🧫🌱👨‍⚕️. He completed his Ph.D. with an outstanding GPA of 19.93/20 under the guidance of Professors Hamid Reza Baradaran, Babak Eshrati, and advisor Abbas Motevalian 🧠📚. Earlier, he completed his M.Sc. in Epidemiology (2013–2015) at the same university with a perfect GPA of 20/20, laying the groundwork for his impactful research in public health 📈🔍.

🏥 Experience 

Dr. Yousef Moradi is an Assistant Professor of Epidemiology with a Ph.D. from Iran University of Medical Sciences and over 160 peer-reviewed publications 🧪📚. He has extensive experience analyzing large-scale health datasets, including electronic health records, using quasi-experimental methods, cohort studies, and advanced statistical modeling in R, Stata, and SPSS 📊💻. At Kurdistan University of Medical Sciences, he has taught MSc and MD students and supervised 10+ research theses 🎓📖. His technical proficiency spans meta-analyses, systematic reviews, and national survey evaluations 📈🔍. Dr. Moradi is committed to impactful global health research and open to remote collaborations 🌍🩺.

📖 Book

Dr. Yousef Moradi has authored key academic resources designed for public health and epidemiology scholars 📚📊. The Statistical Note Book simplifies complex biostatistical concepts for students and researchers using real-world health data examples 📈🧠. The Epidemiology Note Book covers foundational and advanced topics in disease surveillance, study design, and outbreak investigation 🦠📋. His third book, Non-communicable Diseases Epidemiology in Iran, analyzes patterns, trends, and prevention strategies for chronic diseases like diabetes, cancer, and cardiovascular disorders within the Iranian population 💉❤️🧬. These texts serve as vital tools for health professionals and policy researchers across disciplines.

🔍 Research Focus 

Dr. Yousef Moradi’s research spans a broad spectrum of epidemiological and public health domains 🧠🩺. His interests include non-communicable diseases (e.g., gynecology, diabetes, cancer) 🎗️, communicable diseases (HIV/AIDS, AMR) 🦠, and high-risk populations (PWID, MSM, FSWs) 🚻. He specializes in social determinants of health, socioeconomic analysis, and evidence synthesis through systematic reviews and meta-analyses 📊📚. His methodological expertise covers modeling causality, psychometrics, molecular epidemiology (MLST, PCR), and large-scale study designs like cohort, case-control, and RCTs 🔍🧬. Dr. Moradi’s integrative approach strengthens global health strategies through data, diagnostics, and interdisciplinary analysis 🌍💡.

📚 Publication Top Notes

Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021

Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: a systematic analysis …

Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in …

Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the …

Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease …

 

Assoc. Prof. Dr. Peeyush Kumar Kamlesh | Materials for Energy Applications | Young Scientist Award

Assoc. Prof. Dr. Peeyush Kumar Kamlesh | Materials for Energy Applications | Young Scientist Award

Assoc. Prof. Dr. Peeyush Kumar Kamlesh |  Poornima University Jaipur | India

Assoc. Prof. Dr. Peeyush Kumar Kamlesh is a distinguished physicist and materials scientist whose research bridges condensed matter physics, computational materials science, and renewable energy materials. He currently serves as Associate Professor in the Department of Physics and R&D Cell at Poornima University, Jaipur, India, and is also the Founder of Scholarly Publication India. With 33 peer-reviewed papers indexed in Scopus, 1,287 citations across 459 documents, and an h-index of 26, Dr. Kamlesh has established himself as an influential researcher in the fields of half-Heusler alloys, hybrid and double perovskites, and thermoelectric materials for sustainable energy conversion. His computational work uses advanced density functional theory (DFT) tools such as WIEN2k and BoltzTraP to analyze the structural, electronic, and thermoelectric properties of novel semiconductors. He has authored books including Advancements in Half-Heuslers: A Key to Clean Energy and Sustainable Future: Exploring Renewable Energy Solutions, and holds multiple patents on eco-friendly nanomaterials and photovoltaic applications. Dr. Kamlesh’s scientific contributions span leading journals such as Materials Chemistry and Physics, Physica B, Journal of Molecular Modeling, and Physics Scripta, where his findings on lead-free perovskite alternatives and half-Heusler compounds have advanced green energy research. As a reviewer for high-impact journals including Journal of Alloys and Compounds and Scientific Reports, he actively supports peer excellence in materials science. Beyond his research, he supervises Ph.D. students and has organized numerous international conferences and faculty development programs on research methodology. He is recognized for his Young Scientist Award and his leadership in the Centre for Research, Instrumentation & Development (CRID). Through his dedicated pursuit of innovative materials for clean energy and his commitment to academic advancement, Assoc. Prof. Dr. Peeyush Kumar Kamlesh continues to make an enduring impact on the scientific community and the sustainable future of energy materials.

Profile

SCOPUS

ORCID

GOOGLESCHOLAR

Publications

Comprehensive Theoretical Investigation of NaAlX (X = C, Si and Ge) Half-Heusler Compounds: Unveiling the Multifaceted Properties for Advanced Applications

Authors: Ghanshyam Lal Menaria, Upasana Rani, Peeyush Kumar Kamlesh, Dinesh C. Sharma, Ajay Singh Verma
Journal: International Journal of Modern Physics B (2025)

Physical Properties and Power Conversion Efficiency of SrZrX₃ (X = S and Se) Chalcogenide Perovskite Solar Cell

Authors: Naincy Pandit, Rashmi Singh, Anand Kumar, Tarun Kumar Joshi, Akash Shukla, Upasana Rani, Peeyush Kumar Kamlesh, Tanuj Kumar, Priyanka, Ajay Singh Verma
Journal: Modern Physics Letters B (2024)

Computational Investigation of the Fundamental Physical Properties of Lead-Free Halide Double Perovskite Rb₂NaCoX₆ (X = Cl, Br, and I) Materials: Potential Prospects for Sustainable Energy

Authors: Sunita Kumari, Upasana Rani, Monika Rani, Rashmi Singh, Peeyush Kumar Kamlesh, Sarita Kumari, Tanuj Kumar, Ajay Singh Verma
Journal: Modern Physics Letters B (2024)

Electro-Optic and Transport Properties with Stability Parameters of Cubic KMgX (X = P, As, Sb, and Bi) Half-Heusler Materials: Appropriate for Green Energy Applications

Authors: Ghanshyam Lal Menaria, Upasana Rani, Peeyush Kumar Kamlesh, Rashmi Singh, Monika Rani, Nihal Singh, Dinesh C. Sharma, Ajay Singh Verma
Journal: Modern Physics Letters B (2024)

Exploring Properties of Organometallic Double Perovskite (CH₃NH₃)₂AgInCl₆: A Novel Material for Energy Conversion Devices

Authors: Upasana Rani, Peeyush Kumar Kamlesh, Rashmi Singh, Tanuj Kumar, Rajeev Gupta, Samah Al-Qaisi, Kulwinder Kaur, Ajay Singh Verma
Journal: Modern Physics Letters B (2024)

Lead-Free Alternative Cation (Ethylammonium) in Organometallic Perovskites for Thermoelectric Applications

Authors: Anusha Dubey, Naincy Pandit, Rashmi Singh, Tarun Kumar Joshi, Banwari Lal Choudhary, Peeyush Kumar Kamlesh, Samah Al-Qaisi, Tanuj Kumar, Kulwinder Kaur, Ajay Singh Verma
Journal: Journal of Molecular Modeling (2024)

Mr Sina Soltani | Computational Materials Science | Best Researcher Award

Mr Sina Soltani | Computational Materials Science | Best Researcher Award

Sina Soltani is a skilled Instrumentation Engineer at Honeywell UOP, Rosemont, IL, USA, with a strong academic foundation in electrical and control engineering 🎓⚙️. He earned his B.S. and M.S. degrees from Shiraz University, Iran, in 2011 and 2013, respectively. His expertise spans estimation theory, nonlinear systems, adaptive control, signal processing, and intelligent data mining techniques 🧠📊🔧. With a deep interest in innovative industrial automation and smart system integration, he combines practical engineering with advanced control strategies to enhance system reliability and efficiency 🛠️💡📈. He continues to contribute to next-generation engineering solutions globally 🌍🔬.

Mr Sina Soltani, Honeywell UOP, United States

Profile

ORCID

GOOGLESCHOLAR

SCOPUS

🎓 Education

 Sina Soltani earned his M.Sc. in Control and Power Engineering from Shiraz University in 2014 🎓⚡ and a B.Sc. in Electrical and Computer Engineering from Shiraz University of Technology in 2012 💡🔌. He also holds a High School Diploma from Naserian High School, completed in 2005 🏫📘. His academic path is further strengthened by a range of professional certifications in PLC programming (TIA Portal, S7-400H), industrial networks (Profibus, Modbus, Ethernet), and electrical safety (ATEX, ISO 9001) 🧠📈⚙️. This blend of formal education and applied training equips him with strong expertise in automation and instrumentation engineering 🔍🔧.

📏 Experience 

Sina Soltani has over a decade of experience in instrumentation, automation, and control engineering ⚙️🔧. At Honeywell UOP 🇺🇸, he leads instrumentation system design and integration for industrial applications. Previously, he served as a senior engineer at Neyriz Ghadir Steel Complex 🇮🇷, focusing on fire & gas systems, PLC/DCS programming, and calibration 🎛️💡. At Piramoon Pardazesh Qeshm, he specialized in radioactive measurement systems and technical documentation 📊📐. He also held roles as a chief electrical engineer at PetroAzma and as a university lecturer 📚🧠. His expertise spans sensors, analyzers, motors, safety systems, and advanced process control 🌍🔍.

🛠️ Technical Skills 

Sina Soltani possesses a robust technical skill set in Instrumentation Engineering, Control Systems, Automation, and Calibration 🧪⚙️📏. He is proficient in configuring and maintaining advanced industrial instruments, including flowmeters, analyzers, and control valves 🔄🔍. With deep knowledge of PLC/DCS systems, loop tuning, and process optimization, he excels at designing and integrating control strategies for complex operations 💻🔧. His expertise includes working with safety standards (NEC, IEC) and executing diagnostics and root-cause analysis for system failures 🚨🛠️. These capabilities make him a valuable asset in driving innovation and operational excellence across modern industrial environments 🌐🏭.

🏆 Achievement 

On May 22, 2024, Sina Soltani was honored with the Top Researcher Award at Neyriz Ghadir Steel Complex, Shiraz, Iran, for his exceptional contributions to Instrumentation and Automation Engineering 🛠️📡. His innovative work in process control systems, real-time signal integration, calibration technologies, and automation reliability set a benchmark in industrial engineering ⚙️📊. This distinction reflects his impact on system accuracy, safety enhancements, and advanced control methodologies 📈🔍. Recognized for combining deep technical expertise with practical problem-solving, he continues to lead advancements in instrumentation for critical infrastructure and manufacturing environments 🌍🔬.

🔬 Research Focus 

Sina Soltani’s research is centered on advanced control systems, signal processing, and intelligent estimation methods for industrial applications 🧠📉⚙️. His recent work includes the application of autoregressive Kalman filters for gamma level measurement and well-log data estimation 🔬📡, as well as the development of fuzzy logic and iterative learning-based control algorithms for instrument air units and harmonic mitigation ⚡🔁. He also explores high-efficiency modeling of electrical machines using subdomain techniques and smart controllers for distributed energy systems ⚙️🔋🌍. His interdisciplinary focus bridges control theory, automation, and real-time optimization in complex engineering systems 🛠️📊🤖.

📚 Publications

Advances in Gamma Level Measurement by Optimal Autoregressive Kalman Filter

Author: S. Soltani
Conference: 2024 20th CSI International Symposium on Artificial Intelligence and Signal Processing

Designing and Implementing an Algorithm Based on an Autoregressive Kalman Filter to Estimate Well-Log Data

Author: S. Soltani
Conference: 2023 9th International Conference on Control, Instrumentation and Automation (ICCIA)

Introducing an Improved Control Method for Instrument Air Unit Based on Fuzzy and Iterative Learning Control

Author: S. Soltani
Journal: ISA Transactions (2025)

An Analytic 2D Subdomain Model for Slotless Electrical Machines with Internal Arc/Cubic Shape Permanent Magnets

Authors: M. Pourahmadi-Nakhli, M.J.K. SeyedHassanDaryanavard, S. Soltani
Journal: Intelligence 1(1), 13–23 (2025)

Fast Subdomain Approximation of Brushless Electrical Machines with Spoke-Hub Permanent Magnets

Authors: M. Pourahmadi-Nakhli, S.H. Daryanavard, M. Jokar-Kohanjani, S. Soltani
Conference: 2024 32nd International Conference on Electrical Engineering (ICEE)

A Novel Fuzzy Type-2 PI Repetitive Control Methodology for Harmonic Elimination in Distributed Generation Sources

Authors: S. Soltani, M. Rayat
Conference: 2024 9th International Conference on Technology and Energy Management (ICTEM)

Prof. Dr Haigen Gao | Functional Materials | Best Researcher Award

Prof. Dr Haigen Gao | Functional Materials | Best Researcher Award

Prof. Dr. Haigen Gao is a renowned materials scientist at Panzhihua University, China, specializing in computational materials science 🧠🧪. He earned his Ph.D. from Nanjing University and completed a postdoctoral fellowship at Tsinghua University 🎓🔬. His cutting-edge research uses density functional theory (DFT) to predict and design multiferroic and ferroelectric materials ⚛️📊. As a chief scientist for the NSFC 🇨🇳 and author of numerous high-impact publications and patents 📚📈, Prof. Gao combines theoretical depth with real-world application. His work plays a pivotal role in the development of advanced functional materials for next-generation technologies 🧲🧱.

Prof. Dr Haigen Gao, Panzhihua Univeristy, China

Profile

SCOPUS

🎓 Education

Prof. Haigen Gao holds a Ph.D. in Materials Science from Nanjing University, one of China’s premier institutions for scientific research 🧪🎓. Following his doctoral studies, he completed a prestigious postdoctoral fellowship at Tsinghua University, widely recognized as one of the top engineering universities in the world 🌏🏛️. His academic training provided him with a strong foundation in theoretical modeling and materials design 🧠📘. This high-level education equipped him to lead innovative research in computational materials science and physical property prediction 🔬📈. Prof. Gao’s scholarly path reflects a blend of academic excellence and scientific ambition 🌟🧑‍🔬

💼 Experience

Prof. Haigen Gao is an accomplished materials scientist at Panzhihua University, with a strong academic and research background 🏫🔬. He earned his Ph.D. from Nanjing University and completed a prestigious postdoctoral fellowship at Tsinghua University, one of China’s top institutions 🎓🇨🇳. Currently, he serves as Chief Scientist on projects funded by the National Natural Science Foundation of China, leading innovative efforts in materials research 🧪🌍. His expertise centers on theoretical prediction and design of new materials and exploring their physical properties through advanced computational methods 🧠📊. Prof. Gao blends theory with application, driving discovery in modern materials science ⚙️💡.

🧲 Scientific Contributions

He has made significant advancements in 2D multiferroic materials by using density functional theory (DFT) to design stable structures based on BaTiO₃ ⚛️💡. His work revealed that Ni substitution at Ti sites can effectively induce strong coupling between electric and spin orders, overcoming limitations from Ba site distortion and experimental challenges with Ti site replacements 🔬🌀. The resulting magnetoelectric coupling coefficient exceeds 10 V/cm·Oe, outperforming traditional composite systems 📈🔋. These insights offer a promising route for next-generation multifunctional materials used in sensors, memory devices, and spintronics 🧠💾🔧.

🔬 Research Focus

The research focus centers on multiferroic and ferroelectric materials, which exhibit unique combinations of electric, magnetic, and structural properties 🔋🧲🧪. These materials play a crucial role in the development of next-generation memory devices, sensors, actuators, and energy harvesters 💾🎯⚡. The work involves understanding domain dynamics, phase transitions, and structure-property relationships at both nano and macro scales 🔍🔬. By integrating experimental techniques and theoretical modeling, the aim is to design smart, tunable materials for applications in electronics, spintronics, and green technologies 🖥️🔄🌱. This research contributes to advancing miniaturization and multifunctionality in modern electronic systems 📱💡.

📘 Publication

First-principles study on influences of surface and thickness on magnetic and ferroelectric properties of quasi-two-dimensional BaTiO₃ (001) ultrathin film doped with Ni at Ti site

Authors:
H. Gao, Haigen
C. Hu, Chaofan

Journal:
Surfaces and Interfaces, 2025

Dr Huaming Li | Materials Science | Best Researcher Award

Dr Huaming Li | Materials Science | Best Researcher Award

Dr. Huaming Li is an Associate Professor at the College of Physics and Optoelectronics, Taiyuan University of Technology, China. He earned his Ph.D. in Physics from the Georgia Institute of Technology, USA, and has held academic positions at Taiyuan University since 2012. His research focuses on high-pressure thermodynamic behavior of liquid metals and solid solutions. Known for his discovery of linear isothermal regularities and his development of predictive equations of state, Dr. Li integrates fundamental physics with advanced materials science. His scholarly work bridges experimental insight and theoretical modeling in condensed matter and thermal physics.

Dr Huaming Li, Taiyuan University of Technology, China

Profile

SCOPUS

ORCID

🎓 Education

Dr. Huaming Li has a strong academic foundation in physics, beginning with his B.S. (1995–1999) and M.S. (1999–2002) in Theoretical Physics from Lanzhou University, China 🇨🇳. He then earned his Ph.D. in Physics (2002–2009) from the prestigious Georgia Institute of Technology, USA 🇺🇸. His doctoral studies focused on thermodynamic behavior and phase transitions in materials, laying the groundwork for his future in high-pressure physics and condensed matter research. This educational journey equipped him with advanced skills in statistical mechanics, computational physics, and materials theory 📐🧠🔬—essential tools for his innovative work in materials science.

👨‍🏫 Experience

Dr. Huaming Li has rich academic and research experience spanning over a decade in the field of condensed matter and thermodynamic physics 🧪. After earning his Ph.D. from Georgia Tech, he completed a postdoctoral fellowship there, focusing on liquid metals under extreme conditions 🌡️🔬. Currently an Associate Professor at Taiyuan University of Technology, he leads studies on equations of state, entropy, and free volume evolution in high-pressure environments 🔍📊. Dr. Li regularly presents at global conferences like APS, CCMR, and CPS 🌍📢, contributing cutting-edge insights to energy materials, thermal modeling, and phase transition science 🔧⚙️.

🎤 Conference Presentation

Dr. Huaming Li has presented extensively on the thermodynamic behavior of liquid metals under high pressure at prestigious international conferences 🧪🌍. His talks explore linear isotherm regularities, equations of state, and entropy and free volume evolution in metals such as sodium, potassium, indium, and iron under extreme conditions 🔬🌡️. He has delivered findings at the APS March Meetings (USA), CCMR (South Korea), and CPS (China), showcasing his leadership in high-pressure materials research 🧠📊. His work aids in the predictive modeling of metallic liquids, contributing to energy materials design and the understanding of phase transitions ⚙️🧯📈.

⚙️ Research Excellence 

Dr. Huaming Li has made groundbreaking contributions in the field of high-pressure thermodynamics by discovering linear isotherm regularities in liquid metals such as sodium, potassium, gallium, bismuth, and mercury 🧪🧊. His work enables predictive modeling of thermodynamic properties, supporting advanced material design. He also developed theoretical frameworks for polymorphic melting and amorphization in binary solid solutions 🔄🔬. His investigations into anomalous heat capacity behaviors of liquid metals bridge fundamental science and practical engineering applications 📘🔧. Published in top journals like AIP Advances and Physica B, his research is widely recognized and presented at international conferences 🌍📊.

🔬 Research Focus

Dr. Huaming Li’s research centers on the thermodynamics of liquid metals under high pressure ⚙️🌡️, focusing on developing equations of state that describe linear isotherm behaviors in elements such as sodium, potassium, bismuth, and mercury 🧪🔩. He investigates free volume evolution and entropy contributions in condensed matter, especially in glass-forming liquids and metallic alloys 🧊📈. His work explores the structure-property relationships critical to predicting material behavior under extreme conditions, contributing to advancements in energy materials, solid-state physics, and high-performance alloys 🚀🔬. This research bridges theoretical physics with practical materials engineering 🌍🛠️.

📚 Publications

On Heat Capacity of Liquid Mercury Under Pressure
Authors: Huaming Li, Chaochao Bao, Xiaojuan Wang, Yanting Tian, Lin Feng, Ying Zhang, Yongli Sun, Mo Li
Journal: Physica B: Condensed Matter, 2025

Thermodynamic Properties of Liquid Bismuth Under Pressure: New Regularities and an Equation of State
Authors: Huaming Li, Lin Feng, Ying Zhang, Yanting Tian, Yongli Sun, Mo Li
Journal: AIP Advances, 2022

Linear Isotherm Regularities of Liquid Gallium Under Pressure
Authors: Huaming Li, Hao Ding, Yanting Tian, Yongli Sun, Mo Li
Journal: AIP Advances, 2021

Linear Isotherm Regularities of Solid Sodium Under Pressure
Authors: Huaming Li, Hao Ding, Yanting Tian, Yongli Sun, Shiwei Fang
Journal: AIP Advances, 2020

Regularities of Liquid Potassium at Different Temperatures
Authors: Huaming Li, Hao Ding, Yanting Tian, Yong Li Sun, Mo Li
Journal: AIP Advances, 2019

Nonlinearity Acoustic Parameters from Equation of State of Liquid Sodium Under Pressure
Authors: Huaming Li, Xiaoxiao Zhang, Yongli Sun, Mo Li
Journal: AIP Advances, 2017

Thermodynamic Properties of Liquid Sodium Under High Pressure
Authors: Huaming Li, Xiaoxiao Zhang, Yongli Sun, Mo Li
Journal: AIP Advances, 2017

Assist. Prof. Dr Tikaram Neupane | Materials Science | Best Researcher Award

Assist. Prof. Dr Tikaram Neupane | Materials Science | Best Researcher Award

Assist. Prof. Dr. Tikaram Neupane is a physicist specializing in nonlinear optics and nanomaterials, focusing on tungsten and molybdenum disulfide atomic layers. 🔬✨ He holds a Ph.D. in Condensed Matter and Optical Physics and has secured research grants from NASA, DoD, and academic institutions. 💼📚 Dr. Neupane excels in advanced laser techniques, spectroscopy, microscopy, and computational modeling (DFT). 💻🔭 He actively leads scientific fairs, organizes conferences, and serves on editorial boards. 🏆📊 With numerous publications and awards, including a UNESCO fellowship, he combines research excellence with strong community engagement and mentorship. 🌟👨‍🏫

Assist. Prof. Dr Tikaram Neupane, University of North Carolina at Pembroke, United States

Profile

SCOPUS

ORCID

GOOGLESCHOLAR

Education 🎓

Dr. Tikaram Neupane earned his Ph.D. in Condensed Matter and Optical Physics from Hampton University (2016–2020), focusing on third-order optical nonlinearity of tungsten and molybdenum disulfide atomic layers. 🎓🔬 Prior to that, he completed an MS in Condensed Matter Physics at the University of Wyoming (2014–2015), deepening his expertise in advanced physics topics. 📚⚛️ He also holds a Postgraduate Diploma in Earth System Physics from the International Center for Theoretical Physics, Trieste, Italy (2010–2011), where he worked on 2D modeling of mantle convection, exploring viscosity effects and multi-scale processes. 🌍🌀

Experience

Dr. Tikaram Neupane completed his Ph.D. at Hampton University (2016–2020), studying nonlinear absorption/refraction, quantum dots, and all-optical switching in nanomaterials. 🔬✨ During his graduate work at the University of Wyoming, he assisted in solar cell efficiency characterization and perovskite optical simulations. ☀️💻 Since 2021, he has been Assistant Professor of Physics at UNC Pembroke, coordinating Applied Physics and recruiting students through regional science fairs. 🎓📚 He was a Postdoctoral Research Associate at the University of Southern Mississippi (2020–2021), focusing on ocean optics, color, and remote sensing with NASA’s Stennis Space Center. 🌊🚀

Grants and Awards 🏅

Assist. Prof. Dr. Tikaram Neupane is an award-winning physicist specializing in nonlinear optics and nanomaterials. 🏅🔬 He secured prestigious research grants including the Dean’s Research Fund (2021), NC Collaboratory HMSI Award (2022), and PURC Center funding (2023–2025). 💼📊 His honors include the Best Presentation Award at ICNST 2019, NASA & DoD-funded research assistantships (2016–2020), and a UNESCO Fellowship at ICTP, Italy (2010–2011). 🌍🎓 Supported early by Tribhuvan University free-ship (2006–2008), he also held a Graduate Assistantship at the University of Wyoming (2014–2015). His work reflects sustained excellence in physics research and innovation. ✨🔭

Book Chapter 📖

Assist. Prof. Dr. Tikaram Neupane is a co-author of the 2024 book chapter in “Advanced Graphene and Graphene Oxide Materials,” published by MDPI. 📖🧑‍🔬 His expertise lies in condensed matter physics and nonlinear optics of nanomaterials like tungsten and molybdenum disulfide. ⚛️✨ Dr. Neupane combines advanced laser techniques, spectroscopy, and computational modeling to explore cutting-edge material properties. 💡🔬 His scholarly contributions extend beyond research articles to impactful academic publishing, reflecting his leadership in nanomaterials science. 🌍📚 He is dedicated to advancing knowledge in 2D materials and their innovative applications. 🚀🔗

Technical Skills 🖥️

Expert in advanced laser systems including pico- and nano-second lasers (Shunami, Spectra-Physics, Continuum) and CW lasers (Diode, Ar, He-Ne, He-Cd). ⚡🔆 Skilled in nonlinear optics techniques like Z-scan, I-scan, spatial self-phase modulation, and four-wave mixing. 🌀✨ Proficient in Density Functional Theory (DFT) for electronic and optical property calculations of nanomaterials. 💻📊 Experienced in spectroscopy (Raman, UV-Vis, photoluminescence) and microscopy (optical, XRD, AFM, TEM). 🔍📈 Adept with data acquisition tools and optics instrumentation. Software skills include MATLAB, Origin, VASP, and Quantum Espresso. 💾🖥️

Research Focus 🔍

Dr. Tikaram Neupane’s research focuses on nonlinear optical properties of 2D nanomaterials such as graphene oxide, CdSe quantum dots, and hexagonal boron nitride. 📈🧪 His work explores third-order nonlinearity, self-phase modulation, and spin-resolved optical behavior using cutting-edge techniques like Z-scan and DFT simulations. 🔍💡 He investigates quantum optical effects for photonics and optoelectronics, pushing frontiers in nanophotonics, quantum materials, and ultrafast spectroscopy. ⚛️📡 Dr. Neupane’s contributions offer critical insights into the development of next-gen devices for optical communication, sensing, and quantum information technologies. 🚀📱🌐

Publications 📚

Size-dependent fluorescence properties of CdSe quantum dots
👥 Authors: Uma Poudyal, Chandra Mani Adhikari, Nisha H. Makani, Bhoj Raj Gautam, Tikaram Neupane
📘 Journal: Solid State Communications (2025)

Third-Order Optical Nonlinearity of Hexagonal Boron Nitride Atomic Layer
👥 Authors: Tikaram Neupane, Uma Poudyal, Bagher Tabibi, Felix Jaetae Seo
📘 Preprint: Preprints.org (2024)

Cubic Nonlinearity of Graphene-Oxide Monolayer
👥 Authors: Tikaram Neupane, Uma Poudyal, Bagher Tabibi, Wan-Joong Kim, Felix Jaetae Seo
📘 Journal: Materials (2023)

Dispersion in Single-Wall Carbon Nanotube Film: An Application of Bogoliubov–Valatin Transformation for Hamiltonian Diagonalization
👥 Authors: Chandra M. Adhikari, Da’Shawn M. Morris, Thomas W. Noonan, Tikaram Neupane, Basu R. Lamichhane, Bhoj R. Gautam
📘 Journal: Condensed Matter (2023)

Spatial Self-Phase Modulation in Graphene-Oxide Monolayer
👥 Authors: Tikaram Neupane, Bagher Tabibi, Wan-Joong Kim, Felix Jaetae Seo
📘 Journal: Crystals (2023)

Spin-Resolved Visible Optical Spectra and Electronic Characteristics of Defect-Mediated Hexagonal Boron Nitride Monolayer
👥 Authors: Sheng Yu, Tikaram Neupane, Bagher Tabibi, Qiliang Li, Felix Seo
📘 Journal: Crystals (2022)

Lata Kumari Pandey | Smart Materials | Best Researcher Award

Lata Kumari Pandey | Smart Materials | Best Researcher Award

Ms. Lata Kumari Pandey is a passionate Ph.D. research scholar at IIIT Allahabad specializing in behavioral finance, fintech, and digital payment systems 📊💻. She has qualified JRF (99.98 percentile), NET (twice), and WBSET (Rank 4), showcasing her academic brilliance 🎓📚. Lata has published in SSCI and SCOPUS Q1 journals and holds both a design and a utility patent related to fintech innovation 🔬📑. She actively presents at global conferences and co-authors interdisciplinary book chapters 🌐✍️. With a growing academic footprint and innovation-driven mindset, she exemplifies a future leader in finance research and technology integration 🚀📈.

Ms Lata Kumari Pandey, Indian Institute of Information Technology, Allahabad, India

Profile

SCOPUS

🎓 Education

Ms. Lata Kumari Pandey has maintained a strong academic record throughout her educational journey 🏆📚. She completed her 10th and 12th under the ICSE and ISC boards in Delhi with first-class distinction, scoring 79% and 82.66% respectively 📝🏫. She earned her B.Com (Hons) from Burdwan University with 68.99% and an M.Com from Kazi Nazrul Islam University with 78.81%, both in first class 📊🎓. Currently, she is pursuing her Ph.D. in Management Studies at the prestigious Indian Institute of Information Technology Allahabad, focusing on digital finance and behavioral economics 🔍💼.

📚 Book Chapter

Ms. Lata Kumari Pandey has co-authored impactful book chapters that reflect her expertise in data analytics, behavioral finance, and financial technology 📈🔍. Her work includes a data mining-based analysis of customer reviews on payment apps published in a Springer Nature conference proceeding 💬📊, and a credit card fraud detection study using discriminant analysis presented at the K.J. Somaiya Business Analytics Conference 💳🧠. She also contributed to a BLOOMSBURY publication examining heuristics and herding behavior in millennial investment decisions 🧑‍💼💡. These interdisciplinary contributions highlight her academic versatility and real-world relevance in finance and technology 📘🌐.

🎤 Conference Presentations

Ms. Lata Kumari Pandey has presented eight impactful research papers at prominent national and international conferences 🧠🌍. Her presentations span topics such as credit card fraud detection, digital payment adoption, influence of YouTube on investments, and WhatsApp Pay awareness 💳📱. These include conferences hosted by IIIT Allahabad, IIT Guwahati, Manipur University, and Pacific University, and publications through IEEE Xplore and Springer 🎓📊. Her work highlights innovation in behavioral finance and fintech, reflecting her strong communication skills and scholarly engagement with cutting-edge themes in finance and digital technology 🔍💡.

🛡️ Innovation and Patent

Ms. Lata Kumari Pandey has demonstrated strong innovative capabilities through her contributions to two cutting-edge patents in the fintech domain 🧠💳. She is a co-inventor of a Design Patent titled Social Media Payment Platform Integration Device (2025), aimed at seamless financial transactions via social media platforms 📲🔗. She also co-authored a Utility Patent, Multi-Platform Social Media and Payment Integration Hub with Advanced Security Features and AI-Driven Fraud Detection (2025, Application No. 202411077943 A) 🤖🔐. These patents highlight her applied research excellence and vision for secure, tech-integrated financial ecosystems 🚀💼.

🔬 Research Focus

Ms. Lata Kumari Pandey’s research centers on behavioral finance, fintech adoption, and digital payment technologies 📱💹. Her work explores how individuals perceive risk in cryptocurrency, adopt social media payment platforms, and respond to fintech innovations like e-gold and influencer-driven investments 💡📈. She uses both qualitative and quantitative approaches, including social network analysis and systematic literature reviews, to study user behavior and digital finance ecosystems 🔍🧠. Publishing in top-tier SSCI and SCOPUS Q1 journals, her research contributes to understanding modern financial behaviors, digital trust, and the evolving relationship between technology and financial decision-making 🌐💳.

📘 Publications

Factor Affecting the Risk Perception of Cryptocurrency Investor
Authors: Bhattacharjee Jayshree, Pandey Lata Kumari, Singh Ranjit, Baker H. Kent
Journal: Journal of Behavioral Finance (SSCI, ABDC ‘A’, SCOPUS Q1, IF-1.7)

Measuring Awareness about Mutual Funds: A Study on Bank Employees in Tripura
Authors: Deb Sujit, Singh Ranjit, Pandey Lata Kumari, Yadav Vibha, Deb Sankha Subhra
Journal: International Journal of Accounting & Finance Review (ABDC ‘C’ Category)

Unravelling the Determinants of Social Media Payment Platform (SMPP) Usage: A Qualitative Study on User Intention and Adoption
Authors: Pandey Lata Kumari, Bhattacharjee Jayshree, Singh Ranjit, Singh Ambrish
Journal: Bangladesh Journal of Multidisciplinary Scientific Research (SCOPUS Q3)
📱🔍👥

 Beyond the Screen: How YouTube Influencers Shape Equity Investment Decisions
Authors: Pandey Lata Kumari, Singh Ranjit, Baker H. Kent, Rahman Habibur Laskar
Journal: Journal of Theoretical and Applied Electronic Commerce Research (SSCI, ABDC ‘B’, SCOPUS Q1, IF-5.6)
📺📈🎯

Adopting Social Media Payment Platforms: A Systematic Literature Review and Future Research Agenda
Authors: Pandey Lata Kumari, Singh Ranjit, Singh Ambrish
Journal: Academy of Marketing Studies Journal (ABDC ‘B’)
📖💳🧾

Factor Affecting Social Media Payment Platforms: A Social Network Analysis Approach
Authors: Pandey Lata Kumari, Singh Ranjit, Baker H. Kent, Singh Ambrish
Journal: Journal of Service Theory and Practice (ABDC ‘A’, SSCI, SCOPUS Q1, IF-4.9)
🔗📡📊

Fintech Adoption and Dispositional Innovativeness in E-Gold Investment: Evidence from India
Authors: Pandey Lata Kumari, Bhattacharjee Jayshree, Singh Ranjit, Baker H. Kent, Rohit Kumar Sharma
Journal: Journal of Theoretical and Applied Electronic Commerce Research (SSCI, ABDC ‘B’, SCOPUS Q1, IF-5.6)
🪙💡📉

Prof Hsi-Chao Chen | Composite Materials | Best Researcher Award

Prof Hsi-Chao Chen | Composite Materials | Best Researcher Award

Prof. Hsi-Chao Chen is a leading researcher in optoelectronics, currently serving as a professor at National Yunlin University of Science and Technology, Taiwan 🎓🔬. He holds BS and MS degrees in Mechanical Engineering and a Ph.D. in Optical Sciences 📘⚙️. His research focuses on LEDs, optical thin films, stress simulation, and flexible substrates 💡📏. He has authored 35 SCI papers, 26 SPIE proceedings, 132 conference papers, and holds 22 patents 📄🔍. A senior member of SPIE (2017) and OSA (2018), Prof. Chen is known for advancing carbon-based transparent conductive films and porous separation technologies 🧪🌐.

Prof Hsi-Chao Chen, National Yunlin University of Science and Technology, Taiwan

Profile

SCOPUS

ORCID

🎓 Education

Prof. Hsi-Chao Chen holds a Ph.D. in Optoelectronic Science from National Central University, Taiwan 🎓🔬. He previously earned his B.S. in Mechanical Engineering from National Cheng-Kung University in 1993 and an M.S. from National Taiwan University in 1995 ⚙️📘. His academic training spans both mechanical and optical sciences, forming a strong interdisciplinary foundation for his pioneering research in optoelectronics and material science 📡🧪. His diverse education empowered him to explore innovative technologies in flexible electronics, nano-materials, and energy devices 🌍💡. This solid academic background underpins his reputation as a globally respected educator and scientist 📚🌟.

🏫 Experience

Dr. Hsi-Chao Chen is a distinguished professor at National Yunlin University of Science and Technology, Taiwan 🏫📚. With a Ph.D. in Optoelectronic Science, he has built a remarkable career in electronic engineering and material science 🔬⚙️. His work spans flexible electronic coatings, nano-materials, organic solar cells, electrochromics, and biosensors 💡🧪. He has been honored as an Excellent Teaching and Academic Teacher, reflecting his dual commitment to innovation and education 🎓📖. With 32 invention patents and 26 international awards in five years, he has significantly impacted academic research and industrial innovation 🏆🔍.

🔬 Research Focus

Prof. Hsi-Chao Chen’s research is focused on the development and application of advanced materials in flexible electronics and optoelectronic systems 🧪📡. His expertise includes flexible electronic coatings, nano-films, organic solar cells, electrochromic devices, and biosensors 🔋🌱. He explores the integration of functional nanomaterials into flexible substrates to create high-performance, energy-efficient, and environmentally friendly devices 💡🌍. His work also extends to the use of carbon materials for transparent conductive films and innovative porous membranes 🔬📈. Through experimental research and simulation, Prof. Chen contributes to the advancement of smart, flexible, and wearable electronic technologies 🤖📱.

🏅 Contributions

Prof. Hsi-Chao Chen is a distinguished professor at National Yunlin University of Science and Technology, recognized for his groundbreaking work in flexible electronics and optoelectronic materials 🧪📡. He has published 95 scholarly articles, including 35 SCI and 29 EI papers, along with 31 conference publications 📘📊. His portfolio features 15 high-impact SCI papers and 32 invention patents, reflecting both innovation and academic excellence 🧠🔬. As a senior member of OSA and SPIE, a member of IEEE, and a program committee member for OSA OIC and OPTIC, he actively shapes the global optoelectronics research community 🌐💡.

📚 Publications

Gold nanoparticles modified Cu₂O/ZnO nanorod arrays synthesized with anodic aluminum oxide template for high performance non-enzymatic glucose sensor
Authors: Hsi-Chao Chen, Ying-Sheng Lin, Ming-Hsien Yen, Jia-Yu Lin
Journal: Materials Chemistry and Physics

Localized Surface Plasmon Resonance Increases Pulse Voltammetry Detection of Nitrite by Noble-Metal Modified Zirconium-Based Metal–Organic Frameworks: Fabrication and Mechanism
Authors: Hsi-Chao Chen, Ying-Sheng Lin, Jia-Yu Lin, Wen-Wei Huang
Journal: ACS Applied Electronic Materials

Optical and stress properties of ZrO₂/SiO₂ and TiO₂/SiO₂ anti-reflective coatings deposited by ion-beam-assisted deposition on a flexible substrate
Authors: Hsi-Chao Chen, Chun-Hao Chang, Kun-Hong Chen
Journal: Applied Optics

Stress mechanism analysis by finite element method for different dielectric films deposited with ion-beam assisted deposition on flexible substrates
Authors: Hsi-Chao Chen, Yu-Ru Lu, Chun-Hao Chang
Journal: Thin Solid Films

Anisotropic stress mechanisms for different dielectric multi-layer films deposited by ion-beam assisted deposition on flexible substrates
Authors: Hsi-Chao Chen, Yu-Ru Lu, Sheng-Bin Chen
Journal: Thin Solid Films

Economy and colors based on solution-process rGO-TiO₂ dye-sensitized solar cells modulated with organic Fabry-Perot cavity for indoor photovoltaic
Authors: Hsi-Chao Chen, Jhong-Yu Li, Tan-Fu Liu
Journal: Optical Materials

Mr Andrzej Raźniak | Composite Materials | Best Researcher Award

Mr Andrzej Raźniak | Composite Materials | Best Researcher Award

Mr. Andrzej Raźniak is a highly experienced researcher in hybrid energy systems, specializing in hydrogen fuel cells and sustainable propulsion technologies. He holds both M.Sc. Eng. and Ph.D. Eng. degrees from the AGH University of Krakow, where he has worked since 2005. His work bridges fuel science, clean energy, and mobile robotics through the development of innovative energy management algorithms and fuel cell integration 🧠🔧. Actively involved in international collaborations and award-winning projects, his research contributes to the advancement of low-emission energy solutions for both defense and civil applications 🚀🔋🏆.

Mr Andrzej Raźniak, AGH University of Krakow, Poland

Profile

SCOPUS

ORCID

🎓 Education

Mr. Andrzej Raźniak is a distinguished graduate of the AGH University of Science and Technology in Krakow, Poland 🏫🇵🇱. He earned his Ph.D. in Engineering from the Faculty of Energy and Fuels (2005–2013) with research focused on hybrid and hydrogen-based energy systems ⚡🔋. Prior to that, he completed his M.Sc. in Engineering at the Faculty of Fuel and Energy (1999–2004), laying the foundation for his expertise in sustainable energy and fuel technologies 🛠️🌿. His academic path demonstrates a consistent dedication to advancing clean energy solutions through scientific excellence and technical innovation 🎓🌍.

🏫 Experience

Dr. Andrzej Raźniak has been serving as a Research Scientist and Assistant at the Faculty of Energy and Fuels, AGH University of Science and Technology, Krakow, since December 15, 2005. With nearly two decades of academic experience, he has conducted cutting-edge research in hybrid energy systems, hydrogen fuel technologies, and alternative propulsion units 🧠🚗💨. He is actively involved in both teaching and collaborative research, contributing to multiple industrial innovation projects, including those for mobile robotics and clean energy. His long-term academic engagement reflects strong technical leadership, research excellence, and a commitment to sustainable engineering solutions 🌱🔧📚.

🔋 Research Contributions

Mr. Andrzej Raźniak is currently developing advanced algorithms for energy management systems tailored for hybrid propulsion drives powered by alternative fuels 🔧⚡. His work focuses on the integration and control of hydrogen fuel cell stacks, utilizing hydrogen stored in composite cylinders for enhanced energy efficiency and performance 🔋🧪. These contributions are central to building next-generation low-emission mobility platforms, particularly in sectors like defense, robotics, and renewable energy systems 🚙🛡️🌍. His interdisciplinary approach connects fuel science, system optimization, and real-world applications, driving progress in sustainable energy technologies 💡🔬.

🔍 Research Focus

Mr. Andrzej Raźniak’s research is centered on the development and application of hybrid energy systems, particularly the integration of fuel cells for both mobile platforms (such as unmanned vehicles) and stationary power units ⚡🚙. His work explores alternative fuel solutions, emphasizing hydrogen-based energy storage and smart energy distribution algorithms 🔋🧠. By combining robust engineering with innovative system design, his research addresses challenges in sustainable power generation, energy efficiency, and real-time system optimization 🛠️🌱. His contributions support the transition to clean, reliable, and high-performance energy solutions across industrial and defense sectors 🌍🔧.

📚 Publications

Development of Criteria for the Selection and Investigation of PEMFC Stacks as Components of Hybrid Energy Sources for UGVs

Authors: Magdalena Dudek, Andrzej Raźniak, Mikołaj Zarzycki, Rafał Czupryniak, Andrzej Masłowski, Arkadiusz Perski
Published in: MMAR 2024 – 28th International Conference on Methods and Models in Automation and Robotics

Reformed Methanol Fuel Cells Act as a Recharging Unit for an Electric Traction Battery

Authors: Magdalena Dudek, Andrzej Raźniak, Piotr Dudek, Jaroslaw Markowski, Bartosz Adamczyk, Mikołaj Zarzycki
Published in: Energy Transition Holistic Impact Challenge (ETHIC): A New Environmental and Climatic Era – Book Chapter

Technical Assessment of Green Hydrogen Production in Anion Exchange Membrane Electrolyzers Integrated with Off-grid Renewable Energy Systems at Different Scales

Authors: Magdalena Dudek, Andrzej Raźniak, Jaroslaw Markowski, Iliya Iliev, Umar Majeed Sada
Published in: CIEES 2024 – 5th International Conference on Communications, Information, Electronic and Energy Systems

The Energy Efficiency of an Extended Range Unit Involving a Polymer Exchange Membrane Fuel Cell Stack

Authors: Magdalena Dudek, Andrzej Raźniak, Piotr Dudek, Jaroslaw Markowski, Lesia Danchak
Published in: E3S Web of Conferences

Analysis of the Possibilities of Using a Hybrid Drive System with a Methanol-fueled Fuel Cell Dedicated to the Operational Conditions of the Vehicle

Authors: Magdalena Dudek, Andrzej Raźniak, Jaroslaw Markowski, Paweł Imilkowski, Grzegorz Slaski, Iliya Iliev
Published in: CIEES 2023 – 4th International Conference on Communications, Information, Electronic and Energy Systems

Applying a 2 kW Polymer Membrane Fuel-Cell Stack to Building Hybrid Power Sources for Unmanned Ground Vehicles

Authors: Magdalena Dudek, Mikołaj Zarzycki, Andrzej Raźniak, Maciej Rosół
Published in: Energies

Zagospodarowanie Materiałów Odpadowych z Przemysłu Spożywczego jako Paliw do Zasilania Stałotlenkowych Ogniw Paliwowych

Authors: Magdalena Dudek, Andrzej Raźniak, Bartosz Adamczyk
Published in: Przemysł Chemiczny