Assist. Prof. Dr Xanthoula Eirini Pantazi | Materials Science | Best Researcher Award

Assist. Prof. Dr Xanthoula Eirini Pantazi | Materials Science | Best Researcher Award

🌾 Dr. Xanthoula Eirini Pantazi is an Assistant Professor at Aristotle University of Thessaloniki, specializing in precision agriculture, artificial intelligence, and biosystems engineering. 🎓 She holds a Ph.D. in Biosystems Engineering and has contributed extensively to AI-driven agricultural solutions, machine learning, and sensor fusion. 🚀 Dr. Pantazi has been involved in 20+ EU-funded projects, including Horizon 2020 initiatives. Her expertise spans decision support systems, UAV applications, and crop monitoring. 🌱 She has received prestigious scholarships and keynote speaker invitations at international conferences. 🏆 Her research continues to advance smart farming and sustainable agriculture. 🌍📡

Assist. Prof. Dr Xanthoula Eirini Pantazi Aristotle University of Thessaloniki, School of Agriculture Greece

Profile

GOOGLE SCHOLAR

SCOPUS

Research Expertise 🌾

Assist. Prof. Dr. Xanthoula Eirini Pantazi is a distinguished researcher in biosystems engineering, holding a Ph.D. in Biosystems Engineering from Aristotle University of Thessaloniki, Greece. 🏛️ Her expertise lies in bio-inspired computational systems, data mining, and artificial intelligence applications in agriculture. 🌱📊 Over the years, she has contributed to 20+ EU-funded research projects, serving as a coordinator and work package leader in multiple Horizon 2020, PRIMA, and ERANET projects. 🚀 Dr. Pantazi has also authored 26 scientific papers, 9 book chapters, and the monograph “Intelligent Data Mining and Fusion Systems in Agriculture.” 📖

Experience 🚀

Assist. Prof. Dr. Xanthoula Eirini Pantazi has an extensive academic and research background in precision agriculture and bio-systems engineering. Since 2020, she has been an Assistant Professor at the Faculty of Agriculture, Forestry, and Natural Environment at Aristotle University of Thessaloniki, Greece. 🏛️ From 2016 to 2019, she worked as an Adjunct Lecturer, teaching undergraduate courses in agricultural engineering. 📚 Additionally, she served as a Research Engineer and Technical Manager at CERTH (2016-2020) and contributed to major EU-funded research projects as a Research Engineer at Aristotle University (2013-2020). 🔬🌾

Scholarly Contributions ✍️🔬

Assist. Prof. Dr. Xanthoula Eirini Pantazi has significantly contributed to the field of precision agriculture and artificial intelligence through her numerous book chapters. Her work includes data fusion for soil and crop sensing, leaf disease recognition using machine learning, and hyperspectral sensing for weed and crop differentiation. 🌾📡 She has co-authored chapters in Springer and Wageningen Academic Publishers, focusing on AI applications in farming, sustainable agriculture, and bioinformatics. Her expertise in remote sensing, spectral data analysis, and machine learning models has helped develop innovative solutions for smart farming and soil health monitoring. 🚜🤖

📡 Scientific Research 🔬🌾

Assist. Prof. Dr. Xanthoula Eirini Pantazi has led and contributed to numerous EU-funded and international research projects in precision agriculture, AI-driven crop monitoring, and smart farming solutions. As a principal investigator and work package leader, she has developed machine learning models for disease detection, decision support systems (DSS) for sustainable farming, and sensor fusion techniques for soil and crop health assessment. 🚀📊 Her projects include Horizon 2020 initiatives (AfriCultuReS, SiEUSOIL, ATLAS, STARGATE), ICT-AGRI ERANET, and PRIMA projects. Her work integrates AI, robotics, and IoT-based solutions, advancing climate-resilient and precision-driven agricultural systems. 🌍🤖

Research Focus 🔍✨

Assist. Prof. Dr. Xanthoula Eirini Pantazi’s research focuses on applying machine learning, advanced sensing, and data fusion in agriculture 🌾💻. Key areas include crop yield prediction using machine learning and sensing techniques 📊🌱, disease detection in plants through image analysis and spectroscopy 🦠🔬, and weed recognition using hyperspectral sensing and UAV imagery 🚁🌾. She also works on soil health monitoring and water stress detection using multisensor fusion 💧🌍. Dr. Pantazi’s contributions aim to optimize agricultural practices through innovative technologies, improving sustainability and precision in farming 🌿🚜.

Publications 📚

Forecasting of Fusarium head blight spatial distribution in winter wheat using machine learning
Authors: Morellos, A., Pantazi, X.E., Almoujahed, M.B., Šarauskis, E., Mouazen, A.M.
Journal: Computers and Electronics in Agriculture (2025)
🌾💻

Non-Destructive Quality Estimation Using a Machine Learning-Based Spectroscopic Approach in Kiwifruits
Authors: Tziotzios, G., Pantazi, X.E., Paraskevas, C., Michailidis, M., Molassiotis, A.
Journal: Horticulturae (2024)
🥝📊

A Hybrid LSTM Approach for Irrigation Scheduling in Maize Crop
Authors: Dolaptsis, K., Pantazi, X.E., Paraskevas, C., Bustan, D., Mouazen, A.M.
Journal: Agriculture (2024)
🌾🤖

Application of Machine Learning for Disease Detection Tasks in Olive Trees Using Hyperspectral Data
Authors: Navrozidis, I., Pantazi, X.E., Lagopodi, A., Bochtis, D., Alexandridis, T.K.
Journal: Remote Sensing (2023)
🌿💻

Early Detection of Cavitation in Centrifugal Pumps Using Low-Cost Vibration and Sound Sensors
Authors: Karagiovanidis, M., Pantazi, X.E., Papamichail, D., Fragos, V.
Journal: Agriculture (2023)
⚙️🔊

Mubarak Ahmad Khan | Materials science | Best Researcher Award

Mubarak Ahmad Khan | Materials science | Best Researcher Award

Dr Mubarak Ahmad Khan, Bangladesh Jute Mills Corporation, Bangladesh

Dr. Mubarak Ahmad Khan is a distinguished researcher in Polymer and Radiation Chemistry, specializing in biopolymers, natural fibers, and composite materials 🌿🔬. With a Ph.D. and M.Sc. in Chemistry, he has received numerous accolades, including the Jagodish Chandro Bose Green Research Leadership Award and National Environment Gold Medal 🏆🌍. Dr. Khan has held key positions as a Scientific Advisor to Bangladesh Jute Mills and Chief Scientific Officer at the Bangladesh Atomic Energy Commission, with over 30 years of teaching experience at top universities 🎓. He has published 700+ papers, authored 21 book chapters, and holds 8 patents 📚💡, contributing significantly to sustainable materials science. 🌱

Publication Profile

Google  Scholar

Educational Background 🎓

Dr. Mubarak Ahmad Khan earned his Doctor of Philosophy (PhD) in Polymer and Radiation Chemistry in 1991, showcasing his expertise in advanced materials science and chemistry 🧪. Prior to that, he completed his M.Sc. in Organic Chemistry in 1981, providing a strong foundation in chemical processes and compounds 🔬. His academic journey began with a B.Sc. (Hons) in Chemistry in 1979, setting the stage for his illustrious career in the field of chemistry and materials science 🎓. Dr. Khan’s educational background underscores his profound knowledge and contribution to polymer and radiation chemistry 🌍.

Award Received 🥇

Dr. Mubarak Ahmad Khan has received numerous prestigious awards throughout his career, reflecting his outstanding contributions to science and sustainability. In 2023, he was honored with the Jagodish Chandro Bose Green Research Leadership Award 🌱. He also received the National Environment Gold Medal in 2019, presented by the Honorable Prime Minister of Bangladesh 🇧🇩, along with the Pollima Green Gold Medal Award that same year. Other accolades include the National Jute Award (2017) and the Bangladesh Academy of Science Gold Medal (2010). His work has been recognized globally, with honors like the MIT Solve (2020) and Federation of Asian Chemical Society Award (2017) 🌍🏅.

Professional Experience and Contributions 💼

Dr. Mubarak Ahmad Khan has held key positions throughout his career, showcasing his expertise and leadership in various scientific fields. He has served as the Scientific Advisor at Bangladesh Jute Mills Corporation since 2017 🌾 and previously held the role of Chief Scientific Officer at the Bangladesh Atomic Energy Commission (2009–2017) ⚛️. Dr. Khan has also worked at esteemed research institutes globally, including as a fellow at IAEA, DAAD, and Alexander von Humboldt Foundation in countries like Australia, Germany, Japan, and the USA 🌍. His teaching experience spans multiple universities, including Michigan State University, Shahjalal University, and Dhaka University 🎓.

Memberships

Dr. Mubarak Ahmad Khan holds numerous prestigious academic and professional memberships. He is a Senate member at Jahangirnagar University, an academic member of Higher Studies at Dhaka University of Engineering and Technology, and has served on several selection and syllabus committees at universities such as Mawlana Bhashani Science and Technology University and Noakhali Science and Technology University 🎓. Professionally, he is a member of The New York Academy of Science, a Fellow at the Bangladesh Academy of Science, and a lifetime member of both the Bangladesh Chemical Society and Bangladesh Physical Society 🌍. He is also part of UPAC, Polymer Division 🌿.

Research Focus Area 🌱🧬

Dr. Mubarak Ahmad Khan’s research focuses on materials science, specifically biopolymers, natural fibers, and composite materials 🌿. His work includes surface modification of fibers like jute and coir to improve the performance of biodegradable composites 🌱. He has contributed extensively to the development of eco-friendly materials for various applications, including textiles, biomedical devices, and renewable energy solutions 🌍. His research also explores the mechanical properties and thermal behavior of composites, with a focus on sustainable practices in material science 🌱. Additionally, he has delved into the use of natural fibers in reinforced composites and their applications in diverse industries 🧵.

Publication Top Notes 📄✨

Effect of dye extracting solvents and sensitization time on photovoltaic performance of natural dye sensitized solar cells

Effect of chemical modification on the performance of biodegradable jute yarn-Biopol® composites

Effect of 2-hydroxyethyl methacrylate (HEMA) on the mechanical and thermal properties of jute-polycarbonate composite

Hybrid composites of jute and man-made cellulose fibers with polypropylene by injection moulding

Characterization of plant and animal based natural fibers reinforced polypropylene composites and their comparative study

Physico-mechanical properties of wound dressing material and its biomedical application

The Impact of Capital Structure and Financial Performance on Stock Return “A case of Pakistan Textile Industry”

Surface treatment of coir (Cocos nucifera) fibers and its influence on the fibers’ physico-mechanical properties

Conclusion

Dr. Mubarak Ahmad Khan’s extensive career, significant contributions to materials science and environmental sustainability, leadership in research, and his considerable academic achievements make him a highly suitable candidate for the Best Researcher Award. His work not only enhances the field of polymer chemistry but also promotes the use of sustainable materials, especially natural fibers, contributing to both scientific and societal advancements.

Tianyu Ma | Metals and Alloys | Best Researcher Award

Tianyu Ma | Metals and Alloys | Best Researcher Award

Dr Tianyu Ma, Xi’an Jiaotong University, China

Dr. Tianyu Ma is a renowned researcher in materials science, specializing in high-performance materials for aerospace applications. He holds a Ph.D. from Beijing University of Aeronautics and Astronautics and has postdoctoral experience at the National Institute for Materials Science (Japan) and Zhejiang University. Currently a professor at Xi’an Jiaotong University, his research focuses on materials for bearings and high-entropy alloys. With multiple publications in top journals like Nature and Advanced Materials, Dr. Ma’s work impacts aerospace, automotive, and energy industries, focusing on enhancing material performance in extreme environments. ✈️🔬

Publication Profile

Scopus

Orcid

Educational Background 🎓

Dr. Tianyu Ma holds a Ph.D. in Materials Science and Engineering from Beijing University of Aeronautics and Astronautics, where he also completed his Bachelor’s degree. His research focuses on multi-scale analysis of materials for high-performance bearings, specifically in aeroengines. These bearings endure extreme conditions like high temperatures, high speeds, and depleted oil, making them prone to failure. Dr. Ma investigates the damage mechanisms of bearing materials across macro to micro scales, aiming to understand and improve the evolution of bearing failure. His work plays a critical role in enhancing the durability and performance of aerospace components. ✈️🔬

Current Role and Focus 💼

Dr. Tianyu Ma is currently a Professor at Xi’an Jiaotong University’s Frontier Institute of Science and Technology, a position he has held since November 2017. Prior to this, he served as a Postdoctoral Researcher and Associate Professor at Zhejiang University’s Department of Materials Science and Engineering from 2006 to 2017. Additionally, Dr. Ma worked as a JSPS Foreign Postdoctor at the National Institute for Materials Science in Japan from 2011 to 2013, contributing to research in ferroic physics. His extensive academic career spans institutions in China and Japan, focusing on advanced materials for aerospace and engineering applications. 🎓🌍

Research Focus Area 🌱🧬

Dr. Tianyu Ma’s research primarily focuses on advanced materials for high-performance applications, particularly in aerospace and magnetic materials. His work involves multi-scale analysis of materials, such as 8Cr4Mo4V alloy, and exploring damage mechanisms through molecular dynamics simulations. He has also contributed significantly to the development of high-entropy alloys, magnetic materials, and alloys with enhanced mechanical properties like strength, ductility, and thermal expansion. His publications in Nature, Acta Materialia, and Advanced Materials reflect his deep engagement with materials science, especially in the areas of ultrahigh-strength alloys, magnetic performance, and thermally stable materials for extreme conditions. 🛠️✈️🧲

Publication Top Notes📄✨

Enhanced magnetic performance of Fe-rich Sm2Co17-type magnets by optimizing Zr content

Rapid-thermal-process pre-treatment promoted precipitation towards strengthening hard magnetism of Sm2Co17-type magnets

Large Non‐Hysteretic Volume Magnetostriction in a Strong and Ductile High‐Entropy Alloy

Local Displacive Phase Transformation in Large-Magnetostriction Alloy Fe81Ga19

Formation of semi-coherent Zr-rich lamellar phase in 2:17-type Sm-Co-Fe-Cu-Zr magnets with high Fe content

Atomic scale understanding the periodic modulation in ferroelastic alloy Ni-Mn-Ti

Toughening Ceramics down to Cryogenic Temperatures by Reentrant Strain-Glass Transition

Origin of hard magnetism in Fe-Co-Ni-Al-Ti-Cu high-entropy alloy: Chemical shape anisotropy

Conclusion 🔍

Dr. Tianyu Ma’s extensive academic background, innovative research, and prolific publication record make him a strong candidate for the Best Researcher Award. His work bridges fundamental material science with applied engineering, particularly in the area of multi-scale materials analysis, which is essential for improving high-performance bearings and magnets. His ongoing contributions to the development of advanced materials for challenging environments align well with the goals of this award.

Werkne Sorsa | materials | Sustainable Materials Recognition

Werkne Sorsa | materials | Sustainable Materials Recognition

Mr Werkne Sorsa, Jimma university and Applied forest university Germany, Ethiopia

🌍 Mr. Werkne Sorsa is a dedicated Senior Lecturer and researcher in the School of Chemical Engineering at Jimma University Institute of Technology. With a focus on 🌱 sustainable environmental engineering, he specializes in nanomaterials and has conducted impactful research on eco-friendly solutions, such as calcium oxide nanoparticles from corncobs and eggshells for cadmium removal. His technical skills include MATLAB, advanced analytical techniques (NMR, FTIR), and laboratory coordination. 📊 His recent publications on water remediation and waste management emphasize green chemistry approaches, making him a strong candidate for the 🌐 Sustainable Materials Recognition award.

Publication Profile

Orcid

Professional Highlights

Mr. Werkne Sorsa is a Senior Lecturer and researcher in the School of Chemical Engineering at Jimma University Institute of Technology. With a focus on environmental engineering and nanomaterials, his work includes developing sustainable processes for industrial applications and conducting experiments on nanoparticles for environmental remediation.

Academic Background

Mr. Sorsa holds an MSc in Environmental Engineering, with projects emphasizing sustainable solutions such as producing fuel oil from waste plastics and eco-friendly hand sanitizers. His research includes synthesizing corncob-supported calcium oxide nanoparticles from eggshells for removing cadmium from aqueous solutions.

Technical Skills

Mr. Sorsa is proficient in MATLAB, Excel, and advanced analytical instrumentation, including NMR and FTIR. His skills extend to chemical engineering software and laboratory coordination, contributing to his effective research practices.

Research Focus

🔬 Mr. Werkne Sorsa’s research centers on environmental remediation and sustainable water treatment. His work explores innovative approaches using natural and waste-derived materials like corncob-supported calcium oxide nanoparticles and biochar to tackle heavy metal contamination in water. His projects include cadmium and chromium removal from wastewater and nutrient extraction from coffee industry effluents using constructed wetlands. With methodologies like electrocoagulation and response surface analysis, Mr. Sorsa’s studies contribute to eco-friendly and cost-effective treatment solutions, emphasizing waste-to-resource innovations ♻️ and green chemistry 🌱. His research is vital for advancing sustainable environmental engineering practices\

Publication Top Notes

Corncob-supported calcium oxide nanoparticles from hen eggshells for cadmium (Cd-II) removal from aqueous solutions; Synthesis and characterization

Conclusion

Mr. Werkne Sorsa’s expertise in environmental engineering and sustainable materials positions him as an ideal candidate for the Sustainable Materials Recognition award. His research, which combines chemical engineering with environmental remediation, contributes significantly to eco-friendly and sustainable practices, underscoring his impact in the field.