Assist. Prof. Dr Nirmala Darekar | Materials Science | Material Scientist Award

Assist. Prof. Dr Nirmala Darekar | Materials Science | Material Scientist Award

Assist. Prof. Dr. Nirmala Ramdas Darekar is a dedicated researcher and educator specializing in Analytical Chemistry, with a strong focus on the synthesis and biological evaluation of heterocyclic compounds and nanomaterials. She has contributed extensively to material science through eco-friendly nanoparticle fabrication, bioactive compound development, and advanced molecular docking studies. Her prolific research record includes numerous publications in reputed journals, four granted patents, and significant editorial contributions to scientific books. She has been actively involved in academic teaching, mentoring, and participating in national and international conferences, strengthening her profile as a leader in chemical and material sciences.

Assist. Prof. Dr Nirmala Darekar | Rayat Shikshan Sanstha’s Radhabai Kale Mahila Mahavidyalaya Ahmednagar | India

Profile

GOOGLE SCHOLAR

Education

Dr. Darekar holds a Ph.D. in Chemistry from S.P. Pune University, with a specialization in Analytical Chemistry. She also holds an M.Sc. in Analytical Chemistry from the University of Pune, a B.Ed. in Science from S.N.D.T. University, and has cleared the SET in Chemical Science. Her academic achievements are consistently marked by top-class distinctions, reflecting her commitment to excellence. Her doctoral research was rooted in developing novel synthetic methodologies and exploring their biological potential, integrating both experimental and computational approaches for impactful chemical discoveries.

Experience

With over five years of academic experience at Rayat Shikshan Sanstha, Dr. Darekar has been involved in both teaching and high-impact research. She served as a Research Assistant under a UGC major project focused on biologically important chromones and azoles. Her research portfolio spans synthetic chemistry, antimicrobial evaluation, computational studies, and nanomaterial applications. She has edited books, authored multiple chapters, and contributed to the scientific community through workshops, conferences, and collaborative projects.

Contributions

Assist. Prof. Dr. Nirmala Ramdas Darekar has made significant scholarly contributions through the publication of twelve book chapters in prestigious international publications. Her chapters cover a wide range of topics, including the synthesis, properties, and biological applications of various heterocycles such as thiazoles, isothiazoles, thiadiazoles, thiazines, benzothiophenes, benzothiazepines, and benzoxazoles. She has also authored chapters on green chemistry, focusing on nanocatalysts and biogenic synthesis of silver, zinc, and gold nanoparticles using plant, algae, and fungi extracts. These works, published by respected publishers like The Royal Society of Chemistry, Cambridge Scholars, CRC Press, and IGI Global, reflect her expertise in material and medicinal chemistry.

Patents

Dr. Darekar has authored 19 research publications in respected journals such as the Russian Journal of General Chemistry, Russian Journal of Bioorganic Chemistry, and Polycyclic Aromatic Compounds. Her work focuses on synthesizing heterocyclic derivatives, eco-friendly nanoparticle production, and computational modeling of bioactive molecules. She holds four granted patents, including innovations in antimalarial agents, antioxidant agents, antibacterial agents, and therapeutically active compounds. Additionally, she has contributed as an editor for two scientific books and authored twelve book chapters on synthetic strategies and applications of heterocycles and nanomaterials.

Research Focus

Dr. Darekar’s research is centered on the synthesis and characterization of heterocyclic compounds, green synthesis of nanomaterials, and evaluation of their antimicrobial, antioxidant, and anti-inflammatory properties. She integrates computational studies, such as molecular docking, with experimental chemistry to design and optimize biologically active compounds. Her work on eco-friendly fabrication methods supports sustainable chemistry, while her patented innovations contribute to pharmaceutical and material science applications. This multidisciplinary approach bridges organic synthesis, material science, and bioactivity studies.

Publications

Eco-Friendly Fabrication of Silver Nanoparticles Using Syzygium stocksii Leaf Extract: Physicochemical Characterization and Evaluation of Antioxidant and Anti…
Authors: HN Akolkar, GB Pawar, DN Raut, GK Prashanth, HS Lalithamba, S Rao, 
Journal: Russian Journal of General Chemistry

Synthesis, Antimicrobial Activity, and Molecular Docking Study of Novel (E)-1-(5-Chloro-2-hydroxyphenyl)-3-{5-fluoro-2-[(1-phenyl-1H-1,2,3-triazol-4-yl)methoxy…
Authors: JB Wable, CT Mascarenhas, HN Akolkar, NR Darekar, MH Shaikh, …
Journal: Russian Journal of General Chemistry

Benzoxazoles: Diverse Biological Activities and Therapeutic Potential
Authors: GK Prashanth, S Rao, HS Lalithamba, KV Rashmi, NP Bhagya, …
Journal: Five Membered Bioactive N and O-Heterocycles: Models and Medical …, 2025

Benzothiazepine: Recent Advances in Synthesis and Biological Application
Authors: SG Kundlikar, HN Akolkar, DR Thube, NR Darekar, VM Khedkar
Journal: Examining Biological Relevance of Fused S-Heterocycles

Design, Synthesis, Molecular Docking, and Anti-inflammatory Activity of 2-[(E)-{1-[4-(4-Chlorophenyl)-1,3-thiazol-2-yl]-1H-pyrazol-4-yl}(hydroxyimino)methyl]phenol and {1-[4 …
Authors: NR Darekar, SJ Takate, HN Akolkar, MH Shaikh, VM Khedkar, DN Raut, …
Journal: Russian Journal of Organic Chemistry

ynthesis, Properties, and Biological Applications of 1,3-Thiazoles
Authors: NR Darekar, VM Khedkar, PK Gadekar, SD Mhaske, SJ Takate
Year: 2024

Synthesis, Properties, and Biological Applications of 1,2,4-Thiadiazoles
Authors: P Mohite, N Bhoge, SG Dengale, NR Darekar
Year: 2024

Conclusion

Assist. Prof. Dr. Nirmala Ramdas Darekar exhibits a strong combination of academic excellence, innovative research, and practical application in material science. Her achievements in heterocyclic chemistry, green nanotechnology, patents, and scholarly publications clearly position her as a deserving candidate for the Material Scientist Award. Her contributions are both nationally and internationally relevant, with potential for significant future advancements in sustainable and functional material development.

Dr. Tetiana Melnychenko | Materials Science | Best Researcher Award

Dr. Tetiana Melnychenko | Materials Science | Best Researcher Award

Dr. Tetiana Melnychenko is a senior staff scientist at the Department of Vapour-Phase Technologies of Inorganic Materials at the E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine. Her work specializes in advanced materials science, particularly the development of multilayer and high-entropy alloys using electron beam physical vapor deposition (EBPVD). With a deep foundation in metallurgy and a long-standing academic presence, Dr. Melnychenko has contributed significantly to structural materials research and diffusion bonding technologies, establishing herself as a leading figure in vapor-phase technologies.

Dr. Tetiana Melnychenko | E.O. Paton Electric Welding Institute NASU | Ukraine

Profile

SCOPUS

ORCID

GOOGLE SCHOLAR

Education

Dr. Melnychenko earned her foundational degree in the physics of metals from Kiev Polytechnic Institute. She completed her Ph.D. with a focus on phase equilibria and structural formation in complex alloy systems and later attained a Doctor of Science (Dr.Sc.) degree in materials science, where her thesis focused on the structure and properties of condensed metal nanomaterials fabricated by electron beam evaporation. Her academic training is solidly anchored in materials physics and engineering with special emphasis on nanostructured alloys and vacuum deposition methods.

Experience

Dr. Melnychenko has over three decades of professional research experience. She began her scientific career at the Institute for Metal Physics and later advanced through various research roles at the E.O. Paton Electric Welding Institute. She has been instrumental in developing vapor-phase technologies and currently serves as a leading researcher. Her collaborative roles have also extended to international electron beam technology centers, indicating a strong presence in both national and international materials science communities.

Contribution

Dr. Tetiana Melnychenko has co-invented a method for producing encapsulated nanopowders along with the design of an installation to implement this process. The invention addresses the challenges of nanoparticle stability, reactivity, and safe handling by enclosing them in protective shells. This technique enhances the functional properties of nanomaterials and ensures better control during their integration into composite systems. The encapsulation method allows for improved performance in various industrial applications, including electronics, coatings, and energy storage materials. Her contribution to this patent highlights her innovative role in advancing nanotechnology and materials engineering through practical, scalable solutions.

Research Focus 

Dr. Melnychenko’s research is centered on vapor-phase deposition technologies, particularly the use of electron beam evaporation for producing nanostructured films and multilayered materials. She investigates diffusion bonding mechanisms, the formation and behavior of high-entropy alloys, and the mechanical behavior of multilayer foils under heat and load. Her studies provide valuable insights into material interfaces, joining techniques, and the enhancement of mechanical properties through tailored microstructures. She also holds a U.S. patent related to nanopowder encapsulation technologies.

Publications

Effect of Plastic Deformation of Ti/Ni Multilayer Foil with Eutectic Composition on the Formation of Ti6Al4V Alloy Vacuum Diffusion Bonded Joints
Authors: T. Melnychenko, A. Ustinov, S. Demchenkov, O. Samofalov
Journal: Vacuum, Article 114603, 2025

Diffusion Bonding of Ti6-4 Alloy Through Multilayer Interlayers of an Eutectic Composition Based on Ti–Cu System
Authors: T.V. Melnychenko, A.I. Ustinov, O.Y. Klepko, O.V. Samofalov
Journal: The Paton Welding Journal, Pages 3–9, 2025

The Paton Welding Journal 2025 № 01
Authors: T.V. Melnychenko, A.I. Ustinov, O.Y. Klepko, O.V. Samofalov
Journal: Paton Welding Journal 1 (01), Pages 3–9, 2025

Origin of the Formation of Isostructural bcc-Fe + bcc-Cu Nanocomposites in Fe–Cu Alloy via Vacuum Co-deposition
Authors: A.I. Ustinov, L.O. Olikhovska, S.O. Demchenkov, V.S. Skorodzievskii, …
Journal: AIP Advances 15 (1), 2025

Phase and Structural Transformations During Heating of Multilayer Ti/Cu Foils of Eutectic Composition Obtained by the EBPVD Method
Authors: S.O. Demchenkov, T.V. Melnychenko, A.I. Ustinov, O.E. Rudenko, …
Journal: The Paton Welding Journal, Pages 12–19, 2024

The Paton Welding Journal 2024 № 09
Authors: S.O. Demchenkov, T.V. Melnychenko, A.I. Ustinov, O.E. Rudenko, …
Journal: Paton Welding Journal, Issue 03, 2024

The Paton Welding Journal 2022 № 11
Authors: A.I. Ustinov, S.O. Demchenkov, T.V. Melnychenko, O.Y. Klepko
Journal: Paton Welding Journal 11 (11), Pages 39–44, 2022

Conclusion

Dr. Tetiana Melnychenko is a well-qualified candidate for the Best Researcher Award, with an extensive and sustained track record in advanced materials processing and nanostructured systems. Her scientific rigor, innovation in vapor-phase technologies, and contribution to high-entropy alloy research establish her as a leading expert in her field. With increased international collaboration and commercialization efforts, her already substantial impact could become even more globally recognized.

Prof. Dr Francesco Inchingolo | Materials Science | Best Researcher Award

Prof. Dr Francesco Inchingolo | Materials Science | Best Researcher Award

Prof. Dr. Francesco Inchingolo is a globally recognized clinician-scientist and academic leader in dentistry, maxillofacial surgery, and biomedical sciences. A prolific researcher with over 461 indexed publications, his contributions span regenerative medicine, orthodontics, implantology, stem cell research, and oral pathology. With multiple international patents and prestigious recognitions such as being listed in Stanford University’s Top 2% Scientists (2021–2023), his influence extends across academia, industry, and public health. His impact is felt worldwide through clinical innovation, education, and international collaborations.

Prof. Dr Francesco Inchingolo, University of Bari “Aldo Moro” – University Hospital “Policlinico di Bari”, Italy

Profile

ORCID

SCOPUS

🎓 Education

Prof. Inchingolo holds multiple medical and dental degrees, including M.D., D.M.D., and a specialization in Maxillofacial Surgery (O.M.F.S.). He also pursued postgraduate studies in Hygiene & Preventive Medicine (M.P.H.), Odontostomatology, and Experimental Medicine. With further academic qualification through Italy’s ASN MIUR national competitions, he achieved full professorship status in both Odontostomatology and Maxillofacial Surgery. He integrates clinical science with public health and translational medicine, promoting interdisciplinary excellence.

💼 Experience

Prof. Inchingolo is a Full Professor and Director of the Orthodontics Specialty School at the University of Bari “Aldo Moro”, Italy. His roles include Ph.D. supervision, international lectureships, and leading multiple EU- and ESA-funded projects. He has received over 30 national and international awards, including the Sant’Apollonia Award, and collaborates extensively with global universities in India, Albania, Kosovo, Vietnam, and the U.S. His teaching, mentoring, and cross-border research initiatives demonstrate unparalleled professional influence.

🏆 Award Achievements

Prof. Dr. Francesco Inchingolo has received over 30 prestigious awards in recognition of his outstanding contributions to dental science, clinical research, and academic excellence. From the National S. Apollonia Award (2000) to the Best International Paper Award in 2024, his accolades span poster presentations, clinical innovation, surgical techniques, and scientific research. Notable honors include the INNBIORES Research Grant (2017), the Best Italian Researcher in the U.S. (2019), and awards in orthodontics, pediatric dentistry, oral surgery, and maxillofacial science at top-tier congresses like CDUO and SIDO. His international recognition reflects both academic merit and humanistic impact.

🧪 Patent Contributions

Prof. Dr. Francesco Inchingolo is a pioneering inventor with multiple international patents that reflect his interdisciplinary innovation in dental technology and medical diagnostics. His early patent (EP07849724.5 & EP07849718.7) introduced an integrated system for oral calculation relief and implant precision positioning, enhancing clinical outcomes in implantology . During the COVID-19 pandemic, he developed several rapid diagnostic kits for SARS-CoV-2, MERS, and other coronaviruses, with patent filings in the U.S., Europe, Italy, and Hong Kong. These inventions demonstrate his commitment to addressing global health challenges through translational research and cutting-edge biotechnology.

🔬 Research Focus

Prof. Inchingolo’s research spans oral and maxillofacial surgery, stem cells, growth factors, regenerative dentistry, sleep medicine, pediatric dentistry, orthodontics, biotechnology, and public health. He explores both clinical and molecular aspects of dentistry—merging nanoscience, biochemistry, and immunology to address real-world challenges. He also leads research into space dentistry, collaborating with the European Space Agency, and directs cutting-edge studies on salivary diagnostics for IBD funded by Italy’s F.I.S.A. program.

📚 Publications

Evaluating the Success Rates and Effectiveness of Surgical and Orthodontic Interventions for Impacted Canines: A Systematic Review and a Case Series
Authors: Francesco Inchingolo, et al.

Paediatric Dental Trauma: Insights from Epidemiological Studies and Management Recommendations
Authors: Francesco Inchingolo, et al.

Accuracy of the Surgical Template Used in the Placement of Implants and Orthodontic Miniscrews
Authors: Francesco Inchingolo, et al.

Unilateral Agenesis of the Upper Permanent Lateral Incisors in Growing Patients: Gap Closure or Gap Opening? A Systematic Review
Authors: Francesco Inchingolo, et al.

Salivaomics: New Frontiers in Studying the Relationship Between Periodontal Disease and Alzheimer’s Disease
Authors: Francesco Inchingolo, et al.

Oral Health and Cognitive Decline: A Systematic Review of the Periodontitis–Alzheimer’s Connection
Authors: Francesco Inchingolo, et al.

Mesenchymal Stem Cells in Oral and Maxillofacial Surgery: A Systematic Review of Clinical Applications and Regenerative Outcomes
Authors: Francesco Inchingolo, et al.

Ms Vuyolwethu Tokoyi | Materials Science | Best Researcher Award-2401

Ms Vuyolwethu Tokoyi | Materials Science | Best Researcher Award

Ms. Vuyolwethu Tokoyi is a dedicated researcher currently pursuing a Ph.D. in Chemistry at the Durban University of Technology. Her work focuses on green and sustainable chemistry, specifically the use of ZIF-8 and ionic liquids to convert biomass-derived glucose into valuable biochemicals. She holds a Master’s degree in Chemistry from the University of KwaZulu-Natal and has professional experience as a Research Scientist Intern and Sales Technology Chemist. With a strong background in coordination chemistry and applied research, she brings a passion for innovation, community impact, and scientific advancement.

Ms Vuyolwethu Tokoyi, Durban University of Technology, South Africa

Profile

ORCID

 🎓 Education

Ms. Vuyolwethu Tokoyi has an extensive academic background in Chemistry. She is currently pursuing a Ph.D. in Chemistry at the Durban University of Technology, where her research focuses on the application of ZIF-8 and ionic liquids for the conversion of glucose extracted from sugarcane bagasse to value-added biochemicals. She holds a Master’s degree in Chemistry from the University of KwaZulu-Natal. Her master’s research centered on the synthesis and evaluation of Co(II) and Mn(II) dithiocarbamate complexes and their morpholine adducts, with applications in antibacterial and anticancer studies. she completed her Honours degree in Chemistry with distinction (Cum Laude) at the University of Fort Hare, focusing her research on bipyridine adducts of transition metal dithiocarbamate complexes. She also earned her Bachelor of Science degree in Chemistry and Geology from the University of Fort Hare. Prior to that, she obtained her matric exemption from Templeton High School .

Contribution

Ms. Vuyolwethu Tokoyi has made meaningful contributions to the field of chemistry through her academic research and applied scientific work. Her Ph.D. research is advancing sustainable chemical processes by converting agricultural waste into high-value biochemicals using innovative materials like ZIF-8 and ionic liquids—supporting green chemistry and waste valorization efforts. She has also contributed to the understanding of metal-ligand complexes with potential antibacterial and anticancer properties, enriching the field of bioinorganic chemistry. Beyond the lab, she has supported research development at the Institute of Water and Wastewater Technology and contributed to technology-driven solutions during her time at Buckman Laboratories and the Technology Innovation Agency. Through her academic achievements, technical skills, and public-sector engagement, she is helping to bridge research, industry, and societal impact.

🏆Awards

Throughout her academic and professional journey, Ms. Tokoyi has been recognized for her excellence and dedication. She is a recipient of the prestigious National Research Foundation (NRF) Scholarship for both her Honours and Master’s studies. In 2017, she was awarded the James Moir Medal by the South African Chemical Institute (SACI) for outstanding academic performance in Chemistry. She has completed numerous professional development programs, earning certificates in business writing and communications, Microsoft digital literacy, ISO 9001:2015 Quality Management Systems, ISO 45001:2018 Occupational Health and Safety, Mushroom Cultivation, and the design of bioactive molecules such as Pleuran and Cordycepin. She also holds certifications in Quality Control and Quality Assurance Techniques.

👩‍🔬 Experience

Ms. Tokoyi brings over three years of professional experience, primarily within research and applied chemistry roles. she has been serving as a Research Assistant at the Institute of Water and Wastewater Technology (IWWT) at Durban University of Technology. Her earlier roles include working as a Sales Technology Chemist at Buckman Laboratories under the Yes Graduate Program, where she honed her skills in technical sales and client support. Additionally, she served as a Research Scientist Intern at the Technology Innovation Agency, gaining practical experience in scientific research, laboratory operations, and applied innovation in the chemical sciences.

🔬 Research Focus

Ms. Tokoyi’s research is rooted in applied and sustainable chemistry. Her current Ph.D. work investigates the use of advanced materials such as ZIF-8 and ionic liquids for the green conversion of biomass-derived glucose into biochemicals, contributing to circular economy and renewable resource utilization. Her prior research involved transition metal complexes with potential biological applications, highlighting her interests in bioinorganic chemistry, coordination chemistry, and materials chemistry. Her academic trajectory illustrates a commitment to leveraging chemistry for innovation in both health-related and environmental applications.

📚 Publications

Ferrocene-Based Bimetallic MOF Beads as Bifunctional Dye Scavenging and Degrading Materials
👥 Vuyolwethu Tokoyi
📰 Chemical Engineering Transactions, July 2024

Potential Application of IL@ZIFMOF Composites for Lignocellulosic Biomass Valorization: Recent Update
👥 Vuyolwethu Tokoyi
📰 Chemical Engineering and Process Techniques

Should “Ionic Liquids” also be used for solid ionic compounds: Synthesis and characterization of p-anisidinium-based ionic compounds
👥 Vuyolwethu Tokoyi
📰 Chemical Engineering and Process Techniques

Synthesis and antibacterial studies of p-anisidinium-based ionic liquids: Experimental, DFT calculations and molecular docking
👥 Vuyolwethu Tokoyi
📰 Journal of Molecular Liquids

Mr Sudhansu Sekhar Hota | Materials Science | Best Researcher Award

Mr Sudhansu Sekhar Hota | Materials Science | Best Researcher Award

Mr. Sudhansu Sekhar Hota is a passionate materials scientist 🧪⚙️ and research scholar at the Multifunctional Research Laboratory, ITER, SOA University 🏫. His expertise lies in nanoceramics, dielectric materials, polymer composites, and energy storage devices 🔋🔬. With over 30 SCI/SCOPUS-indexed publications 📚 and awards for best paper presentations 🏅, he is advancing research on lead-free electroceramics and perovskite-based functional materials. Skilled in XRD, Raman, SEM, and simulation tools 📈🖥️, Mr. Hota combines theory and experimentation to develop sustainable solutions for next-gen electronics 🌱💡.

Mr Sudhansu Sekhar, Hota SOA UNIVERSITY, India

Profile

SCOPUS

ORCID

GOOGLESCHOLAR

🎓 Education

Mr. Hota is currently pursuing a Ph.D. in Physics (Material Science) at SOA University (ITER), Bhubaneswar 🧪🎓. He completed his M.Sc. in Physics from Berhampur University (2017–2019) with a stellar CGPA of 8.52 📘🔬. His undergraduate studies were in Physics (Hons.) at Dhenkanal Autonomous College, affiliated with Utkal University, where he scored 83.66% 🧠📏. He completed his Intermediate from BJB Junior College, Bhubaneswar (73%) 📚, and his Matriculation from Saraswati Vidya Mandir, Bhawanipatna, achieving an impressive 91.66% 🏆✍️. His academic journey reflects a strong and consistent dedication to science and learning.

🏫 Experience

Since January 2022, Mr. Sudhansu Hota has been working as a Research Scholar at the Multifunctional Research Laboratory, ITER, SOA University, Bhubaneswar 🏫🔬. His role involves advanced research in nanostructured electroceramics, dielectric and ferroelectric materials, and multifunctional composites ⚡🧲. He actively performs material synthesis, characterization (XRD, SEM, Raman), and electrical property measurements using modern instrumentation ⚙️🧪. His contributions support cutting-edge developments in energy storage and sensor applications 🔋📟. As a hands-on researcher, Mr. Hota integrates theoretical modeling with practical experimentation to drive innovations in sustainable material science 🌱💡.

🏅Achievements 

Mr. Hota has been consistently recognized for his research excellence on national and international platforms 🏅🌍. He received the Best Paper Presentation Award at the prestigious 2nd International Conference APSIT 2023, organized by IEEE 🎤📘. Additionally, he secured Second Position in Poster Presentation at the International Conference on Advanced Materials and Applications 2022 for his work on next-generation functional materials 🧪📊. These accolades underscore his innovative research in dielectric materials, energy storage ceramics, and nanocomposites, highlighting his ability to translate complex science into impactful technological applications ⚡🔬.

🌱 Scientific Skills 

Mr. Hota possesses advanced expertise in material characterization and fabrication tools essential for functional ceramics and composite research 🔬🧪. His skillset includes XRD, SEM, Raman, FTIR, UV-Vis spectroscopy, and ferroelectric loop tracers for detailed structural and electrical analysis 📊. He is proficient with instruments like Keithley electrometers, LCR meters, and magnetoelectric systems ⚡🧲. For materials processing, he utilizes ball mills, spin/dip coaters, muffle/vacuum furnaces, and temperature-controlled polling units 🔥🌀. His hands-on command of these tools enables cutting-edge research in energy storage and multifunctional materials 🌱🔋.

🔬 Research Focus

Mr. Hota’s research centers on advanced ceramic materials and nanostructured composites 🔬⚙️, with a strong emphasis on dielectric and ferroelectric behavior for energy applications 🔋. He specializes in X-ray diffraction (XRD) analysis, multiferroics, polymer-based composites, and thin films used in capacitors, sensors, and multifunctional devices 📊📏. His work integrates optical studies, material characterization, and device fabrication, aiming to develop eco-friendly, high-performance energy storage systems 🌱💡. Through innovations in nanomaterials and structure-property correlation, he contributes to next-gen technologies for smart electronics and sustainable energy devices 🌐📡.

📚 Publications

Synthesis and Characterization of Co-doped (Li/W) Distorted Perovskite Bismuth Manganite (Bi₁/₂Li₁/₂)(Mn₁/₂W₁/₂)O₃ for Electronic Devices
Authors: Sudhansu Hota
Journal: Brazilian Journal of Physics (2025)

Dielectric Characteristics and Energy Storage Capabilities of PVDF-Based Composite Incorporating 2D GnP Nanofiller
Authors: Sudhansu Hota
Journal: Results in Engineering (2025)

Fabrication, Structural, Microstructural, Topological and Electrical Characteristics of Powellite Calcium Molybdate for Suitable Electronic Application
Authors: Sudhansu Hota
Journal: Transactions on Electrical and Electronic Materials (2025)

Absorption-Dominant Electromagnetic Interference Shielding of Polymer Nanocomposite PVDF/LiNbO₃ for High-Frequency Microwave Application
Authors: Sudhansu Hota
Journal: ACS Applied Electronic Materials (2025)

Prof Ki Hyung Kim | Materials Science | Best Researcher Award

Prof Ki Hyung Kim | Materials Science | Best Researcher Award

Prof. Dr. Ki Hyung Kim is a leading expert in gynecologic oncology and robotic surgery 🧬🤖. With an MD and Ph.D. from Pusan National University and a visiting professorship at Yale University 🌍🎓, he has authored over 200 scientific publications and led multiple cancer research projects 🔬📚. His research addresses ovarian cancer, endometriosis, and minimally invasive techniques. He holds a U.S. patent for an anti-cancer drug innovation 💊 and has published five medical textbooks. As an educator, innovator, and clinician, Prof. Kim advances women’s health through global research and medical excellence 👩‍⚕️🌟.

Prof Ki Hyung Kim, Pusan National University School of Medicine, South Korea

Profile

SCOPUS

ORCID

🎓 Education 

Prof. Dr. Ki Hyung Kim earned his MD (1985–1991) and Ph.D. in Medicine (1999–2001) from Pusan National University School of Medicine 🎓⚕️. He completed his residency in Obstetrics and Gynecology at Pusan National University Hospital (1995–1999) 🏥👨‍⚕️. His academic career began as an Assistant Professor (2001), followed by promotion to Associate Professor (2005) and then Professor (2011–present) 📘🏅. Notably, he expanded his global expertise during his tenure as a Visiting Professor at Yale University School of Medicine (2006–2008) 🌍🔬. His educational journey reflects a lifelong commitment to women’s health and clinical excellence.

👩‍⚕️ Experience

Prof. Ki Hyung Kim has over three decades of medical and academic expertise in obstetrics, gynecology, and oncology 🩺🎓. After earning his MD (1991) and Ph.D. (2001) from Pusan National University, he completed a residency in OB-GYN and began his academic career as Assistant Professor (2001), rising to Associate Professor (2005) and then Full Professor (2011–present) at Pusan National University School of Medicine 🏥📚. His international profile was enriched through a Visiting Professorship at Yale University (2006–2008) 🌍🧬. Prof. Kim’s career reflects deep commitment to teaching, research, and clinical excellence in women’s health 👩‍⚕️🔬.

📖 Books 

Prof. Ki Hyung Kim has authored five influential medical textbooks focused on gynecology, endoscopic surgery, and chronic pelvic pain 📚🩺. His works include Chronic Pelvic Pain (2023) 📖, a detailed exploration of diagnostic and therapeutic approaches, and Gynecology (5th and 6th editions, 2015 & 2021) 🧬, widely used in medical education. Gynecologic Oncology (2020) 🎗️ covers clinical and surgical management of women’s cancers, while Endoscopic Surgery in Obstetrics and Gynecology (2018) 🤖 guides minimally invasive procedures. These books are essential references for clinicians, researchers, and students in advancing women’s healthcare knowledge and surgical practice globally 🌍📘.

🏆 Contributions 

Prof. Kim has led pioneering advancements in gynecologic oncology and minimally invasive surgery 🧬🤖, notably in pelvic pain management and robotic techniques. His impactful research has earned Best Paper Awards 🏆 and national recognition. As an editorial board member of SCI(E) journals 📖🌐, he influences global scientific dialogue. Through active roles in medical societies 🩺👥, he drives clinical innovation and surgical training. His work has improved patient care outcomes 🏥💡 and expanded evidence in women’s health, especially through novel surgical approaches and multidisciplinary collaboration for endometriosis and gynecologic cancer treatment 🔍👩‍⚕️.

🔍 Research Focus

Prof. Kim’s research centers on gynecologic oncology, minimally invasive and robotic surgery, and the management of chronic pelvic pain disorders such as endometriosis and adenomyosis 🧬🤖🩺. His work explores clinical innovation in ovarian, cervical, and uterine cancers, emphasizing laparoscopic and robotic techniques for safer, more effective treatment outcomes 🔍👩‍⚕️. He integrates clinical trials, translational research, and multidisciplinary collaboration to develop advanced protocols for diagnosis, prevention, and therapy 💉🔬. With a focus on personalized medicine, surgical precision, and improved patient recovery, Prof. Kim contributes extensively to global advancements in women’s reproductive health 🌍💡.

📚 Publications

Comparison of Surgical Outcomes Between Single-Site Laparoscopic Adenomyomectomy and Fundusectomy: Experience from a Single Center
Authors: Jeong, J.H.; Kim, Y.R.; Kim, B.R.; Lee, J.W.; Oh, S.Y.; Yun, J.H.; Han, M.S.; Song, Y.J.; Kim, K.H.
Journal: Journal of Clinical Medicine (2025)

Ribosomal Proteins Mediate Non-Canonical Regulation of Gut Inflammatory Signature by Crop Contaminant Deoxynivalenol
Authors: Kim, J.; Song, B.; Kim, K.H.; Moon, Y.
Journal: Ecotoxicology and Environmental Safety (2025)

Clinical Outcomes of Poly(ADP–Ribose) Polymerase Inhibitors as Maintenance Therapy in Patients with Ovarian Cancer in the Southeastern Region of Korea
Authors: Ha, H.I.; Yoon, H.J.; Song, C.; Kim, E.T.; Suh, D.S.; Kim, K.H.; Na, Y.J.; Song, Y.J.
Journal: Current Oncology (2024)

Leveraging Xenobiotic-Responsive Cancer Stemness in Cell Line-Based Tumoroids for Evaluating Chemoresistance: A Proof-of-Concept Study on Environmental Susceptibility
Authors: Kim, K.H.; Lee, S.J.; Kim, J.; Moon, Y.
Journal: International Journal of Molecular Sciences (2024)

Pulmonary Cryptococcosis Masquerading as Lung Metastasis in Gynecologic Cancers: Two Case Reports
Authors: Lee, S.Y.; Song, Y.J.; Lee, G.; Yoon, H.J.; Choi, K.U.; Suh, D.S.; Kim, K.H.
Journal: Medicine (2023)

Preoperative Haematologic Markers for the Differentiation of Endometrial Cancer from Benign Endometrial Lesions in Postmenopausal Patients with Endometrial Masses
Authors: Song, Y.J.; Kim, H.G.; Yoon, H.J.; Choi, K.U.; Suh, D.S.; Kim, K.H.
Journal: Cancer Management and Research (2023)

The Discrepancy Between Preoperative Tumor Markers and Imaging Outcomes in Predicting Ovarian Malignancy
Authors: Shin, K.H.; Kim, H.H.; Yoon, H.J.; Kim, E.T.; Suh, D.S.; Kim, K.H.
Journal: Cancers (2022)

Mr Sindre Zeiner-Gundersen | Materials Science | Best Researcher Award

Mr Sindre Zeiner-Gundersen | Materials Science | Best Researcher Award

Mr. Sindre Zeiner-Gundersen is a leading physicist and principal process engineer with a strong background in hydrogen technology, nuclear physics, and advanced energy systems. With over two decades of experience, he has worked across sectors including green hydrogen, ammonia, tidal energy, and nuclear reactor development. He is the founder and technical director of several pioneering research initiatives focused on hydrogen Rydberg matter, ultra-dense hydrogen, and propellantless propulsion systems. His blend of theoretical insight and applied engineering has positioned him at the forefront of innovation in renewable and quantum-based energy technologies.

Mr Sindre Zeiner-Gundersen, University Of Iceland, Norway

Profile

SCOPUS

🎓 Education 

Mr. Sindre Zeiner-Gundersen holds a Ph.D. (Cand.) in Hydrogen Physics and Excited States of Hydrogen from the University of Iceland (2016–2023) 🧪⚛️. He earned an M.Sc. in Electron Microscopy and Material Physics from the University of Oslo (2011–2012) 🔬🧫, and another M.Sc. in Environmental and Biotechnological Sciences from NMBU (2006–2009) 🌱🧬. He began his academic path with a B.Sc. in Physics from the University of Tromsø (2003–2006) 📘🧠. His specialized training includes hydrogen fuel cell design, solar grid optimization, LabVIEW, TEM/SEM, and XRF calibration, equipping him with advanced technical and computational skills 🛠️💻🔍.

💼 Experience 

Mr. Sindre Zeiner-Gundersen brings over a decade of multidisciplinary expertise in hydrogen, ammonia, and advanced energy systems ⚛️🔋. As Principal Process Engineer at Scatec ASA (2022–), he leads large-scale hydrogen/ammonia infrastructure projects 🌍⚙️. At Norconsult AS (2021–2022), he advised on hydrogen technologies and renewable process systems 💼🔬. He co-founded Nornec AS, focusing on nuclear reactor design and instrumentation 🔧🧪. At Norrønt AS (2009–2020), he directed a pioneering laser-pulsed hydrogen/deuterium reactor project 🚀💡. His experience spans engineering design, quantum energy research, and sustainable system optimization across multiple continents 🌐🛠️.

💻 Project Contributions 

Mr. Sindre Zeiner-Gundersen has led and contributed to over a decade of high-impact energy and engineering projects 🌍⚡. His portfolio includes the design and optimization of green hydrogen and ammonia facilities across Egypt, Oman, and Norway 🏗️💨. He played key roles in 100+ MW electrolyzer deployments, waste-to-energy plasma systems, and tidal/wind energy turbines 🌊☀️. As Chief Scientist and Process Engineer, he delivered scalable solutions for hydrogen production, fusion research, and carbon capture systems 🧪🔋. His strategic work bridges clean energy deployment, hydrogen materials, and advanced propulsion, making him a cornerstone in sustainable technology innovation 🚀♻️.

🧲 Research Focus 

Mr. Zeiner-Gundersen’s research centers on quantum hydrogen states, nuclear fusion, and plasma-based waste-to-energy systems ⚛️🔋🔥. He explores ultra-dense hydrogen, focusing on material excitation, radiation shielding, and superconductivity for advanced energy applications 🧪🧲🛡️. His groundbreaking studies in propellantless propulsion, fusion catalysts, and turbine optimization merge theoretical physics with real-world energy systems 🚀🌍. His work supports breakthroughs in green hydrogen infrastructure, renewables, and aerospace energy technologies 🌱⚙️✈️. Blending visionary science with applied engineering, Mr. Zeiner-Gundersen pioneers frontier technologies that redefine how energy is generated, stored, and utilized across industries 🌐🔧.

📘 Publications

A Technical Review of Hydrogen Production Methods, Equipment, and Market Leaders

Author: Sindre Zeiner-Gundersen
Published: November 2024

Unlocking Your Creativity – The Power of the Theta Brainwave State

Author: Sindre Zeiner-Gundersen
Published: October 2023

Muon-Catalyzed Fusion: Breaking Barriers Toward Scalable Clean Energy Solutions

Author: Sindre Zeiner-Gundersen
Published: October 2023

Exploring the Connection Between Rydberg Matter, Ultra-Dense Hydrogen, Black Holes, and Frozen Stars: A New Paradigm in Compact Quantum States

Author: Sindre Zeiner-Gundersen
Published: October 2023

Harnessing Ultra-Dense Hydrogen and Meson Generators: A New Frontier in Sustainable Energy and Fundamental Physics

Author: Sindre Zeiner-Gundersen
Published: October 2024

Superconductivity and Quantum Effects in Ultra-Dense Hydrogen

Author: Sindre Zeiner-Gundersen
Published: September 2024

Design and Energy Requirements of a Linear Wormhole Accelerator Fueled by Ultra-Dense Hydrogen Annihilation

Author: Sindre Zeiner-Gundersen
Published: September 2024

Dr MICHELE CROZATIER | Materials Science | Women Researcher Award

Dr MICHELE CROZATIER | Materials Science | Women Researcher Award

Dr. Michèle Crozatier is a senior scientist (DR1-CNRS) at the Centre de Biologie Intégrative, University of Toulouse III – Paul Sabatier, France. She co-leads the research group “Hematopoiesis and Immune Response in Drosophila” and is internationally recognized for her pioneering work in developmental biology and genetics. With over three decades of experience, she has significantly advanced the understanding of blood cell development, immune response, and stem cell regulation using Drosophila as a model organism. Her work integrates molecular biology, immunology, and stem cell niche dynamics, positioning her as a leader in integrative biomedical research.

Dr MICHELE CROZATIER, MCD/CBI /University Toulouse, France

Profile

ORCID

🎓 Education

Dr. Michèle Crozatier earned her Ph.D. in Molecular and Cellular Biology in 1987 from the University of Clermont-Ferrand II, France 🎓🧬. She later received her HDR (Habilitation to Direct Research) in 2002 from the University Paul Sabatier, Toulouse III, where she has since been a leading figure in developmental biology education and research 🧫📘. Her academic training laid the foundation for decades of innovation in stem cell biology, genetics, and hematopoiesis research 🔬🧠. Dr. Crozatier’s prestigious academic credentials reflect her long-standing commitment to scientific excellence and interdisciplinary education in life sciences 📚🌍.

🏛️ Experience 

Dr. Michèle Crozatier is a senior research director (DR1-CNRS) at the Centre de Biologie Intégrative, CNRS–University Paul Sabatier, Toulouse 🏛️🔬. Since 2021, she has co-led the research group “Hematopoiesis and Immune Response in Drosophila” 🧬🦟. With a career spanning over three decades, she has held roles from postdoctoral researcher at the Netherlands Cancer Institute 🧫 to group leader and platform coordinator at CNRS Toulouse 🔍👩‍🔬. Her contributions to developmental genetics, immune signaling, and stem cell biology have shaped Drosophila research across Europe and inspired innovation in immunology and niche biology globally 🌍🧠.

🔍 Grant-Funded Research

Dr. Michèle Crozatier has led and collaborated on multiple prestigious research projects exploring Drosophila hematopoiesis and immune regulation 🧬🦠. Her ANR and FRM-funded projects investigated niche-stem cell interactions, vascular influences on blood cell formation, and the microenvironmental control of hematopoiesis under stress 🔍🩸🌱. Supported by agencies like ANR, FRM, and Ligue contre le Cancer, her work utilizes Drosophila as a model to uncover principles relevant to mammalian systems 🧪🧫. These studies bridge developmental biology and immunology, offering key insights into how stem cells respond to signals and environmental changes under physiological and pathological conditions 🧠⚙️.

🏆 Scientific Contribution

Dr. Michèle Crozatier has an impressive scientific record with 54 publications, including 10 invited reviews 📝📚. Since 2007, she has authored 20 original research papers, with 10 as last and corresponding author, reflecting her leadership in the field 🧬🔬. Her research contributions focus on hematopoiesis, stem cell regulation, and immune responses using Drosophila as a model organism 🧫🦠. Her work, featured in top journals like Nature, PNAS, and eLife, has deepened understanding of niche signaling and developmental genetics 🧠🌱. Dr. Crozatier’s output reflects a sustained and influential role in life science research globally 🌍🏆.

🔬 Research Focus 

Dr. Michèle Crozatier’s research centers on developmental biology, with a specific focus on hematopoiesis, stem cell regulation, cell signaling, and genetic control mechanisms 🧬🔬🧫. Using Drosophila melanogaster as a model organism 🪰, her work explores how blood cells are formed, maintained, and influenced by their microenvironment. She investigates the interplay between stem cells and their niches, uncovering how external and internal signals govern immune cell differentiation and response 💉🧠. Her studies provide valuable insights into fundamental biological processes with implications for understanding human health, immune disorders, and regenerative medicine 🌍.

📚 Publications

Hematopoietic progenitor maintenance depends on their direct contacts with the niche
Authors: Tian Y., Morin-Poulard I., Liu X., Vanzo N., Crozatier M.*
Journal: PNAS, 2023, Vol. 120, No. 18, e2217862120

The Drosophila lymph gland acts as a hematopoietic organ and is a model to study blood cell development
Authors: Destalminil-Letourneau M., Morin-Poulard I., Tian Y., Vanzo N., Crozatier M.*
Journal: eLife, 2021; 10:e64672

Immune stress triggers hematopoietic progenitor plasticity and niche remodeling in Drosophila
Authors: Morin-Poulard I., Tian Y., Vanzo N., Crozatier M.*
Journal: Frontiers in Immunology, 2021; 12:719349

Drosophila model for studying the vascular control of hematopoiesis
Authors: Louradour I., Sharma A., Morin-Poulard I., Letourneau M., Vincent A., Crozatier M., Vanzo N.
Journal: eLife, 2017; e25496

Reactive oxygen species control blood progenitor cell fate via regulation of niche signals
Authors: Morin-Poulard I., Sharma A., Louradour I., Vanzo N., Vincent A., Crozatier M.*
Journal: Nature Communications, 2016; 7:11634

Drosophila hematopoiesis under immune challenge
Authors: Oyallon J., Vanzo N., Krzelien J., Morin-Poulard I., Vincent A., Crozatier M.*
Journal: PLoS One, 2016; 11(2):e0148978

Notch and Dpp signaling pathways cooperate to maintain hematopoietic progenitors
Authors: Pennetier D., Oyallon J., Morin-Poulard I., Dejean S., Vincent A., Crozatier M.*
Journal: PNAS, 2012; 109(9): 3389

Prof Junping LIU | Fuzhou University | Best Researcher Award

Prof Junping LIU | Fuzhou University | Best Researcher Award

Prof. Junping Liu is a prominent figure in civil and structural engineering, currently serving as a Professor at the College of Civil Engineering, Fuzhou University, China. With a Ph.D. in Bridge and Tunnel Engineering from Chang’an University, his work integrates cutting-edge research in composite bridge structures, ultra-high performance concrete (UHPC), and structural innovation. Prof. Liu has an extensive track record of academic leadership, numerous publications in high-impact journals, and recognition through national scientific achievement awards. His research has significantly advanced both theoretical frameworks and practical applications in modern bridge engineering.

Prof Junping LIU, Fuzhou University, China

Profile

SCOPUS

🎓 Education 

Prof. Junping Liu holds a Ph.D. in Bridge and Tunnel Engineering from Chang’an University (2006–2009), where he specialized in advanced structural systems for infrastructure 🏗️🎓. He earned his M.S. in Structural Engineering from Changsha University of Science and Technology (2002–2005), focusing on composite structures and load-bearing behavior 📐🔬. His academic journey began with a diploma from the College of Civil Engineering and Architecture, Jiangxi Science & Technology Normal University (1995–1998), laying a solid foundation in civil engineering fundamentals 🧱📏. This educational progression has shaped his expertise in modern bridge design and engineering innovation 🌉💡.

🏛️ Experience 

Prof. Junping Liu brings over two decades of expertise in civil and structural engineering 🏗️📐. He is currently a Professor at Fuzhou University (2021–present) and previously served as Associate Professor (2013–2020) and Assistant Professor (2010–2013) in the same department 🎓🏛️. From 2017–2018, he was a Visiting Scholar at the University of Toronto, expanding his global research outlook 🌍📚. Earlier in his career, he worked as a Civil Engineer at the An’fu County Construction Bureau (1998–2002), gaining valuable practical experience in infrastructure development and municipal projects 🏢🛠️. His career blends academic leadership with real-world engineering impact.

🏆 Award 

Prof. Junping Liu has received prestigious provincial awards for his groundbreaking work in bridge engineering and composite structures 🏗️📐. In 2012, he was honored with the Fujian Provincial Award for Achievement in Science and Technology for his research on the theory and application of steel–concrete composite bridge structures 🔩🧱. Earlier, in 2010, he received the Gansu Provincial Award for his innovative contributions to the design and performance of rectangular steel tube trusses 📊🔧. These accolades reflect his leadership in developing sustainable, high-performance infrastructure solutions that shape modern civil engineering 🌉🏆.

📘 Book 

Co-authored by Prof. Junping Liu, this book offers a comprehensive overview of concrete-filled steel tubular (CFST) arch bridges, a key innovation in modern bridge engineering 🌉🧱. Published by Springer in 2022, it explores the mechanical behavior, design methods, construction techniques, and performance evaluation of CFST structures 🛠️📐. It also presents experimental results, numerical simulations, and case studies that demonstrate the durability and load-carrying capacity of these composite systems 📊🧪.

🔬 Research Focus

Prof. Junping Liu’s research focuses on advanced structural systems in civil engineering, with an emphasis on concrete-filled steel tube (CFST) arch bridges and composite bridge technologies 🌉🔩. He explores the behavior, design, and durability of ultra-high performance concrete (UHPC) for next-generation infrastructure 🧱⚙️. A key area of his work includes the rehabilitation and strengthening of aging bridges, contributing to sustainable and resilient engineering practices 🛠️♻️. Through experimental analysis and field applications, his studies enhance the safety, efficiency, and innovation of long-span bridge systems across various environments 🌍🔬.

📚 Publications

Flexural Behavior of Steel-UHPC-NC Composite Girders with Different UHPC-NC Interface Treatments

Authors: Jing-Wei Zhu, Yu Pan, Junping Liu, Mostafa Fahmi Hassanein, Hai-Ting Li
Journal: Journal of Bridge Engineering (2025)

Experimental Study on Punching Shear Behavior of Ultra-High-Performance Concrete (UHPC) Slabs

Authors: Junping Liu
Journal: Buildings (2025)

Design Principles and Technological Development of Concrete-Filled Steel Tube Composite Bridges (Review Article)

Authors: Junping Liu

Trial Design of Concrete Arch Bridge with UHPC Butterfly Web

Authors: Liu Junping, Xie Yunpeng, Xiong Shiwei, Wang Daolin, Chen Bao-Chun
Journal: Journal of Chang’an University (Natural Science Edition) (2025)

Study on Vehicle-Bridge Coupling and Impact Factor of the Wumengshan Bridge

Authors: Junping Liu

 

Assist. Prof. Dr Yousef Moradi | Materials Science | Material Scientist Award

Assist. Prof. Dr Yousef Moradi | Materials Science | Material Scientist Award

Dr. Yousef Moradi is an accomplished epidemiologist and lecturer with a B.Sc. in Public Health (2013), M.Sc. in Epidemiology (2015), and Ph.D. in Epidemiology (2020) from Iran University of Medical Sciences 🎓🔬. His Ph.D. research explored the transmission of ESBL-producing E. coli in the environment and food chain 🧫🌍. He has supervised numerous theses on infectious and chronic diseases and currently serves at Kurdistan University of Medical Sciences 🏥📊. Recognized among the top 1% most cited researchers globally 🌐📈, Dr. Moradi’s work bridges public health, microbiology, and data-driven disease prevention strategies.

Assist. Prof. Dr Yousef Moradi, Kurdistan University of Medical Sciences, Iran

Profile

GOOGLESCHOLAR

🎓 Education 

Dr. Yousef Moradi earned his Ph.D. in Epidemiology (2016–2020) from Iran University of Medical Sciences, ranked 3rd nationally in medical education 🎓🏥. His dissertation focused on the transmission of extended spectrum β-lactamase (ESBL) producing E. coli across environmental, food, and human chains 🧫🌱👨‍⚕️. He completed his Ph.D. with an outstanding GPA of 19.93/20 under the guidance of Professors Hamid Reza Baradaran, Babak Eshrati, and advisor Abbas Motevalian 🧠📚. Earlier, he completed his M.Sc. in Epidemiology (2013–2015) at the same university with a perfect GPA of 20/20, laying the groundwork for his impactful research in public health 📈🔍.

🏥 Experience 

Dr. Yousef Moradi is an Assistant Professor of Epidemiology with a Ph.D. from Iran University of Medical Sciences and over 160 peer-reviewed publications 🧪📚. He has extensive experience analyzing large-scale health datasets, including electronic health records, using quasi-experimental methods, cohort studies, and advanced statistical modeling in R, Stata, and SPSS 📊💻. At Kurdistan University of Medical Sciences, he has taught MSc and MD students and supervised 10+ research theses 🎓📖. His technical proficiency spans meta-analyses, systematic reviews, and national survey evaluations 📈🔍. Dr. Moradi is committed to impactful global health research and open to remote collaborations 🌍🩺.

📖 Book

Dr. Yousef Moradi has authored key academic resources designed for public health and epidemiology scholars 📚📊. The Statistical Note Book simplifies complex biostatistical concepts for students and researchers using real-world health data examples 📈🧠. The Epidemiology Note Book covers foundational and advanced topics in disease surveillance, study design, and outbreak investigation 🦠📋. His third book, Non-communicable Diseases Epidemiology in Iran, analyzes patterns, trends, and prevention strategies for chronic diseases like diabetes, cancer, and cardiovascular disorders within the Iranian population 💉❤️🧬. These texts serve as vital tools for health professionals and policy researchers across disciplines.

🔍 Research Focus 

Dr. Yousef Moradi’s research spans a broad spectrum of epidemiological and public health domains 🧠🩺. His interests include non-communicable diseases (e.g., gynecology, diabetes, cancer) 🎗️, communicable diseases (HIV/AIDS, AMR) 🦠, and high-risk populations (PWID, MSM, FSWs) 🚻. He specializes in social determinants of health, socioeconomic analysis, and evidence synthesis through systematic reviews and meta-analyses 📊📚. His methodological expertise covers modeling causality, psychometrics, molecular epidemiology (MLST, PCR), and large-scale study designs like cohort, case-control, and RCTs 🔍🧬. Dr. Moradi’s integrative approach strengthens global health strategies through data, diagnostics, and interdisciplinary analysis 🌍💡.

📚 Publication Top Notes

Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021

Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: a systematic analysis …

Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in …

Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the …

Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease …