Dr jinlan An | Microstructure and Properties | Best Researcher Award

Dr jinlan An | Microstructure and Properties | Best Researcher Award

🔧 Dr. Jinlan An is a Lecturer at the Key Laboratory of Fundamental Science for National Defense of Aeronautical Digital Manufacturing Process, Shenyang Aerospace University ✈️. Her research focuses on advanced materials engineering, particularly the laser deposition repair of GH4169 alloy and its microstructural evolution under electric pulsed current ⚡🧪. By studying phase transformations such as the dissolution of Laves phase and precipitation of γ″ phase, she aims to enhance mechanical strength and durability of aerospace components 🛠️. Dr. An’s work is highly relevant to aerospace repair, additive manufacturing, and metallurgical innovation, marking her as a rising talent in the field 🚀📈.

Dr jinlan An, Shenyang Aerospace University, China

Profile

SCOPUS

Experience 🧑‍🏫

Dr. Jinlan An currently serves as a Lecturer at the Key Laboratory of Fundamental Science for National Defense of Aeronautical Digital Manufacturing Process, Shenyang Aerospace University 🏛️. Her professional work focuses on laser deposition repair of high-performance alloys, particularly GH4169 🛠️. She specializes in examining the effects of electric pulsed current ⚡ on microstructural evolution, including the behavior of phases like the Laves phase and γ″ precipitation 🔍. Through this, she aims to enhance mechanical properties such as strength and durability 🔧. Her experience aligns strongly with applications in aerospace repair, additive manufacturing, and defense materials ✈️🧬.

Research Project 

Dr. Jinlan An is currently leading a research project on the evolution of phase transformations in GH4169 alloy during laser deposition repair under the influence of electric pulsed current ⚡🧪. Her work aims to understand how specific microstructural changes—such as Laves phase dissolution and γ″ phase precipitation—affect the mechanical properties of the repaired alloy 🛠️. This project has crucial implications for aerospace applications, where material reliability and strength are critical ✈️🔧. By optimizing energy input and phase behavior, her study contributes to advanced metallurgical techniques and more efficient additive manufacturing workflows 🔄🧱.

Research Focus 🔬

Dr. Jinlan An’s research centers on the microstructure and properties of GH4169 nickel-based superalloy subjected to laser deposition repair combined with electric pulsed current ⚡. She investigates how phase transformations—including Laves phase dissolution and γ″ precipitate formation—govern mechanical behavior such as tensile strength, hardness, and fatigue resistance 🛠️. By correlating processing parameters (energy density, pulse duration) with microstructural evolution (grain size, phase distribution), she aims to tailor material performance for critical aerospace components ✈️. Her work advances additive manufacturing and defense materials by optimizing repair strategies to achieve reliable, high-performance alloys 📈.

Contributions 🧪

Dr. Jinlan An has made impactful contributions to understanding the mechanical enhancement of GH4169 alloy through laser deposition repair under electric pulsed current ⚡. Her findings show that mechanical strength improves as energization time increases 🔧📈. She discovered the partial dissolution of the Laves phase into the matrix and the precipitation of the γ″ phase, which grows in size with longer current exposure 🔬. These insights reveal how phase evolution directly influences alloy performance, offering valuable guidance for repair strategies in aerospace materials engineering ✈️ and advanced metallurgy 🔩.

Publications 📚

Mechanism of Improving Microstructures of Laser Deposition Repaired GH4169 Alloy by Pulse Current
✍️ Authors: J. An, Jinlan; H. Li, Haopu; S. Zhou, Song; B. Gao, Bo; F. Chen, Fulong
📚 Journal: Zhongguo Jiguang / Chinese Journal of Lasers, 2025
🔬 Theme: Microstructure optimization, GH4169 alloy, pulse current, laser deposition repair
⚙️ Highlights: Investigates how pulse current enhances the microstructure during laser deposition repair of high-performance alloys

Effect of Heat Treatment on Microstructure and Mechanical Properties of TA15 Titanium Alloy Repaired by Laser Deposition
✍️ Authors: S. Zhou, Song; L. Wang, Lanbin; J. An, Jinlan; B. Wu, Bin; X. Zhang, Xiaochen
📚 Journal: Journal of Materials Engineering and Performance, 2025
🔥 Theme: Heat treatment, titanium alloy, microstructure-performance relationship, laser repair
🔧 Highlights: Explores how post-repair heat treatment influences structural integrity and mechanical properties of TA15 alloy

Mr Hani Mohamed Hamed | Materials Characterization Techniques | Best Researcher Award

Mr Hani Mohamed Hamed | Materials Characterization Techniques | Best Researcher Award

Mr Hani Mohamed Hamed, Nuclear Materials Authority, Egypt

Mr. Hani Mohamed Hamed Tawfik Mohamed is a dedicated researcher in nuclear and environmental chemistry, holding a B.Sc. in Chemistry and Biochemistry, a Master’s in corrosion of nuclear fuel cladding materials, and pursuing a Ph.D. on rare earth elements and radioactive materials from monazite sand. With impactful publications in journals like Journal of Nuclear Materials, his expertise spans neutron activation analysis, zirconium corrosion, and electrochemical studies. He works as a chemist at Egypt’s Nuclear Materials Authority, contributing to critical national projects. His research interests include nuclear fuel cycle management and environmental protection. 🌍🔬📚

Publication Profile

Scopus

Educational Background 🎓

Mr. Hani Mohamed Hamed is a Ph.D. student in Inorganic Chemistry at Zagazig University, Egypt, since March 11, 2020. His research focuses on the characterization of Monazite sand using Neutron Activation Analysis, estimating neutron self-shielding, and recovering rare earth elements, thorium, uranium, and phosphorus. He has completed pre-doctorate courses during the summer of 2020 and fall 2021. Hamed holds a Master of Science degree in Inorganic Chemistry from Zagazig University (2014), where his thesis focused on the effect of water chemistry on the corrosion of nuclear fuel cladding materials. He also earned his Bachelor of Science degree in Chemistry-Biochemistry from Ain Shams University in 2007. 🎓🔬📚

Skills and courses📊

Mr. Hani Mohamed Hamed has developed a strong skill set through various courses and certifications. He achieved an IELTS score of 6 out of 9 in 2019 and 2017, and completed the TOEFL iBT with a score of 65 and TOEFL pBT with 496. Hamed also participated in key workshops at Zagazig University, including “Scientific Writing and Reference Management,” “International Database, References Management and Plagiarism Avoidance,” and “International Publication of Scientific Research” in 2019. Additionally, he completed the Graduate Record Examinations, scoring 146 in Quantitative Reasoning and 134 in Verbal Reasoning. His technical expertise includes SPSS, Chemical Industry Technology, and ICDL certifications. 📚🎓📊

Professional Experience💼

Mr. Hani Mohamed Hamed has extensive work experience in various fields. Since March 31, 2015, he has been working as a Chemist at the Nuclear Materials Authority in Egypt. Prior to this, he served as a Medical Representative at Egyphar Pharmaceutical Company from January 2011 to December 2016. Hamed also taught Science and Chemistry at El-Fouad International Language Schools and a charity during the 2010-2011 academic year. Additionally, he worked as a Pharmacist Assistant at El-Saad El-Kubra Pharmacy from July 2007 to August 2010, gaining valuable experience in the pharmaceutical field. 💼🔬📚

Research Focus Area 🌱🧬

Mr. Hani Mohamed Hamed’s research focuses on several critical areas within nuclear chemistry and materials science. His expertise includes the nuclear fuel cycle and waste management, particularly the chemistry and separation of actinides and lanthanides, spent nuclear fuel reprocessing, and radioactive waste management. He also explores separation techniques, nuclear chemistry, radiochemistry, and environmental chemistry. Additionally, his work extends to materials science and engineering, nanoscience, and nanotechnology. A key focus of his research is the corrosion of zirconium alloys (Zircaloys) in reactor environments, crucial for nuclear fuel performance and safety. ⚛️🔬🧪🛠️

publication Top Notes📚🔍

The impact of elevated lithium concentration 3.5 ppm on the corrosion rate of zirconium

Electrochemical corrosion of Zircaloy-2 under PWR water chemistry but at room temperature

Conclusion

Mr. Hani Mohamed Hamed’s robust academic background, impactful research contributions, and global collaborations make him a suitable and deserving candidate for the Best Researcher Award. His work addresses critical challenges in energy sustainability and materials science, reflecting excellence and innovation in his field.