Dr Gum-Chol Jang | Nanomaterials | Best Researcher Award

Dr Gum-Chol Jang | Nanomaterials | Best Researcher Award

Dr. Gum-Chol Jang is a materials scientist specializing in nanofiber research and electrospinning technologies. He obtained his B.Sc. and M.Sc. degrees in Nano Materials Engineering from Kim Chaek University of Technology, where he also earned his Ph.D. in 2021. Currently working at the Institute of Nanoscience and Nanotechnology, Dr. Jang has been actively engaged in developing antibacterial nanofibers and exploring microwave-assisted processes for material disinfection and drying. His innovative work aims to tackle real-world challenges in healthcare and environmental safety through nanoscale engineering.

Dr Gum-Chol Jang, Institute of Nanoscience and Nanotechnology, Kim Chaek University of Technology, North Korea

Profile

SCOPUS

🎓 Education

Dr. Jang’s academic journey began at the Faculty of Materials Science and Technology, Kim Chaek University of Technology. He pursued a Master’s degree in Nano Materials Engineering and later completed his Ph.D at the same institution. His educational progression reflects a strong foundation in materials engineering with a specific focus on nanoscience and electrospinning methods laying the groundwork for his current research on antibacterial nanofibers and microwave heating.

💼 Experience

Since 2018, Dr. Jang has served as a researcher at the Institute of Nanoscience and Nanotechnology, where he works on electrospinning systems, nanofiber design, and microwave applications. His Ph.D. work and post-doctoral research have contributed to the understanding and innovation in electric field optimization for multi-needle electrospinning systems. His practical skills in laboratory processes, combined with his academic rigor, have made him a valuable contributor to the nanomaterials research community.

🧪 Contributions

Dr. Gum-Chol Jang’s research contributions primarily focus on the development and functional application of nanofibers using electrospinning technology. His work emphasizes the fabrication of antibacterial nanofibers for use in healthcare, filtration, and environmental protection. Through precision control of electrospinning parameters, he enhances fiber performance and bioactivity. Additionally, Dr. Jang explores the use of microwave heating for material disinfection and drying, offering an efficient, eco-friendly solution for sterilization processes. His interdisciplinary research bridges nanotechnology, materials science, and public health, contributing significantly to next-generation material innovation.

🔬 Research Focus

Dr. Jang’s research is primarily focused on nanofiber development via electrospinning, with a special emphasis on antibacterial properties for biomedical and environmental use. Additionally, he explores microwave heating technologies as eco-friendly, efficient alternatives for material disinfection and drying. His interdisciplinary work combines electrical engineering, nanotechnology, and materials science to address both theoretical challenges and practical needs in public health and manufacturing.

📘 Publication

  • Title: Optimization of parameters of auxiliary electrodes for electric field uniformity around spinneret needles in multi-needle electrospinning by using Taguchi method

  • Authors: Gum-Chol Jang, Dong-Chol Im, Yong-Ho Pak

  • Journal: Journal of Electrostatics, Volume 136, Article 104100 (2025)

This peer-reviewed publication showcases Dr. Jang’s engineering approach to enhancing electrospinning efficiency—a crucial advancement in the scalable production of nanofibers.

Ms Marwah Naser | Nanomaterials | Best Faculty Award

Ms Marwah Naser | Nanomaterials | Best Faculty Award

Ms. Marwah Naser is a passionate researcher and academic in Analytical Chemistry, currently pursuing her Ph.D. at Ankara University, Turkey. With a strong foundation from her Master’s and Bachelor’s degrees in Pharmacy, she excels in designing electrochemical sensors using nanomaterials like Fe₃O₄ and graphene. Her work focuses on drug detection in real-world samples, contributing to both environmental safety and biomedical advancements. Multilingual and internationally trained, she actively publishes in top journals and collaborates globally. Ms. Naser exemplifies innovation, academic dedication, and scientific curiosity. 🔬📖

Ms Marwah Naser, Ankara university, Turkey

Profile

SCOPUS

🎓 Education 

Ms. Naser holds a Ph.D. in Analytical Chemistry (2025–ongoing) from Ankara University, Turkey, preceded by her M.Sc. (2021–2023) from the same institution. She began her academic path with a Bachelor’s in Pharmacy (2009–2014) from Al-Mustansiriyah University, Iraq. Her academic journey across Iraq and Turkey showcases her dedication to scientific growth and her pursuit of excellence in pharmaceutical analysis and electrochemical sensor development. Each stage of her education reflects a solid blend of theory, lab expertise, and innovation. 🎓🔬📚🌍

💼 Experience 

Ms. Naser brings a combination of teaching and research excellence to the classroom and laboratory. She has hands-on experience in synthesizing and characterizing nanocomposites, developing electrochemical sensors, and analyzing drug samples in biological and environmental media. Her work is guided by leading experts in the field and supported by practical application through voltammetry and spectroscopy techniques. She actively contributes to scholarly publications and interdisciplinary collaborations, enriching the learning environment with real-world scientific insights. 🧪👩‍🏫📊🔬

🔬 Research Focus 

Ms. Naser’s research centers on electrochemical sensor innovation, focusing on drug detection in biological and environmental samples. She leverages graphene oxide, Fe₃O₄ nanoparticles, activated carbon, and MOFs for electrode modification. Her methods employ DPV, CV, and EIS techniques to ensure sensitivity and cost-effectiveness in pharmaceutical analysis. Her work contributes to the development of smart, portable, and robust diagnostic systems, addressing global healthcare needs. Her passion lies at the intersection of nanotechnology, electroanalytical chemistry, and public health. ⚗️📈💊🌡️

📚 Publications

Low-cost voltammetric sensor based on reduced graphene oxide anchored on platinum nanoparticles for robust determination of Favipiravir in real samples
👩‍🔬 Bouali, W., Erk, N., Kholafazadehastamal, G., Naser, M., & Tiris, G.
📘 Diamond and Related Materials, 131, 109609 (2023)

Ultra-sensitive electrochemical sensor based on tannic acid/iron/titanium oxide for the detection of tyrosine in real biological and food samples
👩‍🔬 Erk, N., Naser, M., & Bouali, W.
📘 Microchemical Journal, 208, 112626 (2025)

Comparative assessment of ZIF-based electrochemical sensors for Cabotegravir detection in environmental, biological, and pharmaceutical samples
👩‍🔬 Genc, A. A., Bugday, N., Bouali, W., Erk, N., Naser, M., Duygulu, O., & Yaşar, S.
📘 Microchemical Journal, 114211 (2025)

Molecularly imprinted polymer film loaded on the metal–organic framework with improved performance using stabilized gold-doped graphite carbon nitride nanosheets for the single-step detection of Fenamiphos
👩‍🔬 Mehmandoust, M., Erk, N., Naser, M., & Soylak, M.
📘 Food Chemistry, 404, 134627 (2023)

These works collectively showcase her expertise in electrochemical sensors, nanomaterials, and biosensing technologies, making her a standout in the field of analytical chemistry and environmental diagnostics 🧫⚗️🧬.

Dr Chih-Jung Chang | Nanomaterials | Best Researcher Award

Dr Chih-Jung Chang | Nanomaterials | Best Researcher Award

Dr. Chih-Jung Chang is a prominent researcher in microbiology, immunology, and gut microbiota, with a research focus that spans from traditional Chinese medicine to extracellular vesicle biology. Holding a Ph.D. from the Graduate Institute of Biomedical Science at Chang Gung University, he currently serves as an Associate Research Fellow at Xiamen Chang Gung Hospital. His prolific research contributions include more than 50 peer-reviewed articles in high-impact journals, several patents, and notable international conference presentations. Dr. Chang’s work is widely recognized for its innovation in microbiome-based therapeutics, immune modulation, and metabolic disease intervention.

Dr Chih-Jung Chang, Huaqiao University, China

Profile

SCOPUS

🎓 Education 

Dr. Chih-Jung Chang holds a strong multidisciplinary academic background spanning nutrition, biotechnology, and biomedical science 🎓🧬📚. He earned his Ph.D. in Microbiology and Immunology from the Graduate Institute of Biomedical Science at Chang Gung University (2010–2015) 🔬🧫. Prior to that, he completed a Master’s degree in Medical Biotechnology and Laboratory Science from the same university (2007–2009) 🧪💉. His academic journey began with a Bachelor’s degree in Nutrition from Chung Shan Medical University (2003–2007) 🥗📘. This robust educational foundation has empowered him to conduct impactful, cross-disciplinary research in immunology, microbiota, and disease modulation 🌱🧠.

🏥 Experience

Dr. Chih-Jung Chang has built an impressive research career in immunology and microbiota science 🧬🧫. He began as a Postdoctoral Fellow at the Molecular and Clinical Immunology Center, Chang Gung University (2015–2017) 🧪📚. He then advanced to Assistant Research Fellow at the Microbiota Research Center (2017–2019), where he deepened his work on host-microbe interactions 🔬🌱. Since 2019, he has been serving as an Associate Research Fellow at the Medical Research Center, Xiamen Chang Gung Hospital 🏥💡. His roles reflect a consistent focus on translational microbiome research, immunomodulation, and innovative biomedical applications 🌍💊.

🏅 Award 

Dr. Chih-Jung Chang has received prestigious accolades for his outstanding academic and scientific contributions 🏅📚. He was honored with the Excellent Thesis Award by the 7th Wang Minning Foundation in Taiwan, recognizing his impactful doctoral research in microbiology and immunology 🎓🔬. Additionally, he earned the Distinguished Paper Award from the Taiwan Society for Microbiology for his innovative work in gut microbiota and immune modulation 🧫🧠. These awards reflect his excellence in scientific writing, original research, and contributions to the global microbiological community 🌍📖, strengthening his reputation as a leader in biomedical science.

🎤 Conference Presentation 

Dr. Chih-Jung Chang has actively presented his groundbreaking research on gut microbiota, extracellular vesicles, and natural immunomodulators at international conferences across the USA, Australia, China, and Fiji 🌍🎤. His studies highlight the effects of Ganoderma lucidum and Antrodia cinnamomea on natural killer cells, immune signaling, and obesity modulation 🧫🦠🔥. He also explored Akkermansia muciniphila‘s role in metabolic regulation and EV-based diagnostics in allergic rhinitis and lung injury 🧬💨. From Lorne Infection & Immunity to ISEV 2024, his work bridges microbiome science with clinical innovation, earning global attention in the field of biomedical microbiology 🧠🔬🌱.

🌿 Patent 

Dr. Chih-Jung Chang holds multiple U.S. patents focused on natural compound-based therapies 🌿🧪. His inventions include novel methods to extract Ganoderma lucidum and Hirsutella sinensis polysaccharides with anti-obesity, insulin-sensitizing, and liver-protective effects 💊🩺. He also pioneered microbiome-driven approaches using Parabacteroides goldsteinii to reduce body fat, improve glucose tolerance, and treat fatty liver disease 🧫⚖️🍽️. These patents reflect his innovative contributions to functional foods, microbiome-based therapeutics, and metabolic disease management 🔬🧠. His work bridges natural medicine with cutting-edge biotechnology for tackling global health challenges related to obesity, diabetes, and inflammation 🌍💡.

🔬 Research Focus 

Dr. Chih-Jung Chang’s research focuses on the interplay between the gut microbiota, extracellular vesicles, and host immunity, using advanced multi-omics technologies 🧬🔬. His work explores how microbiome-derived vesicles influence diseases such as psoriasis, gestational diabetes, asthma, and inflammatory disorders 🤒🧫. By employing animal models like mice and zebrafish 🐭🐟, he investigates the anti-inflammatory, antioxidative, and immunomodulatory properties of natural compounds and microbial signals 🌿💊. Dr. Chang’s goal is to translate these findings into novel therapeutic strategies and diagnostic biomarkers for chronic diseases, contributing significantly to the field of precision microbiome medicine 🧠🩺🌍.

📚 Publications

Multi-omics Analysis of Outer Membrane Vesicles from P. goldsteinii in a Psoriasis Mouse Model

Authors: Zhaoxiang Xie, Rongqin Ke, Chih-Jung Chang, et al.
Journal: Life Sciences (2025)

Anti-inflammatory and Antioxidative Effects of Perilla frutescens-Derived Extracellular Vesicles: Insights from Zebrafish Models

Authors: Jinghong Huang, Linxin Chen, Wenhua Li, Chih-Jung Chang
Journal: Molecular Immunology (2025)

Microbiome Analysis of Serum Extracellular Vesicles in Gestational Diabetes Patients

Authors: Chih-Jung Chang, Yuci Bai, Hong Jiang, Hungchien Huang, Tien Jui Chen
Journal: Acta Diabetologica (2025)

Prof. Dr Ik JIN KIM | Nanomaterials | Outstanding Scientist Award

Prof. Dr Ik JIN KIM | Nanomaterials | Outstanding Scientist Award

Prof. Dr. Ik Jin Kim is a distinguished materials scientist born in 1959 in Gapyung, South Korea 🇰🇷. He earned his Ph.D. in Structural Ceramics from RWTH Aachen University, Germany 🇩🇪, and has dedicated his career to thermal shock-resistant ceramics, carbon nanotubes, and renewable energy materials 🔬⚙️. With over 250 publications and leadership roles in top institutes like PAIM and CATIC, he has made significant contributions to high-temperature ceramics and nano-composites 🌡️🧪. After retiring from Hanseo University, he joined GMIT in 2025, continuing his impact on advanced material research and academic mentorship 🎓🌍.

Prof. Dr Ik JIN KIM, Research Innovation Center/GMIT, South Korea

Profile

SCOPUS

Education 🎓

Prof. Dr. Ik Jin Kim has a distinguished educational background in materials science and engineering. He completed his Bachelor’s degree in 1985 from the Department of Inorganic Material Science and Engineering at Myong Ji University 🎓. He furthered his studies with a Master’s degree in 1987 from the same field at Han Yang University 📚. In 1992, Prof. Kim earned his Doctorate (Dr.-Ing.) in Materials Science and Engineering from RWTH Aachen University, Germany 🎓🌍. His academic journey spans prestigious institutions, showcasing his expertise in material science, particularly in inorganic materials 🛠️🔬.

Experience 🏢

Prof. Dr. Ik Jin Kim has over three decades of experience in materials science and engineering 🎓🔬. He served as a Professor at Hanseo University (1994–2024) and is currently a Visiting Professor at GMIT 🌐. His international roles include Invited Professor at ETH Zurich 🇨🇭 and Technical Advisor for Mann & Hummel GmbH 🇩🇪 and Wonjin World Wide 🏭. He led research at Seoul National University of Education and held directorships at PAIM, CATIC, and BIEMT 🧪🏢. With early research roots at RWTH Aachen, his career reflects a strong blend of academic leadership and global industrial collaboration 🌍.

Awards 🏅

Prof. Dr. Ik Jin Kim has received numerous prestigious academic and scientific awards recognizing his excellence in materials science, ceramics, and research leadership 🏅🔬. His accolades include the Korea Presidential Award (2024), Forest Academic Award (2024), and multiple Best Paper Awards from international conferences like CIM, IUMRS-ICA, and the Korean Engineering Ceramics Society 🧪📄. He was honored by the Chinese Ceramic Society, the Korean Association of Crystal Growth, and received the Marquis Who’s Who Award twice 📘. Additionally, he earned the Chosun Literature Poet Award (2012), showcasing his intellectual breadth across science and literature ✍️.

Book Contributions 📘

Prof. Dr. Ik Jin Kim is both a prolific scientist and a literary author 📚. He authored key high school textbooks on ceramics, including “Manufacture of Ceramics” (1996), “Sintering of Ceramics (1997), and “New Ceramics” (2001), published by The Ministry of Education in South Korea 🎓🔬. In parallel with his scientific achievements, he has published several poetry collections, such as “Spinning Line” (2012), “Loss of Gravity” (2015), “Geometric Solitude” (2017), and “Traces of Asymmetry” (recent), which explore deep themes of existence and the human experience 🖋️💫. His dual expertise bridges science and art with intellectual elegance.

Research Focus 🔬

Prof. Dr. Ik Jin Kim’s research spans a wide spectrum of advanced inorganic materials and engineering ceramics 🔬🏗️. His work includes colloidal chemistry, microporous ceramics via direct forming, and the synthesis of zeolites for environmental and industrial applications ⚗️🧱. He has pioneered methods for growing carbon nanotubes using templates to create efficient nano-filters 🌫️💡. His expertise in high-temperature structural ceramics, especially those with thermal shock resistance, extends to developing ultra-low or negative thermal expansion materials based on Al₂TiO₅ and cordierite 🌡️🛠️. He also advances ceramics for semiconductor packaging, bridging materials science with cutting-edge electronics 💻⚙️

Patents

Prof. Dr. Ik Jin Kim holds over 20 patents in the field of advanced ceramics, nanomaterials, and bioceramics, demonstrating his commitment to applied innovation 🧪🛠️. His patented technologies include methods for producing zeolites, porous ceramics, and carbon nanotubes using hydrothermal and direct forming techniques 🔍🧱. Applications range from liquid crystal components for LCDs, optical lenses, and nano-filters to 3D-printed bioceramic scaffolds for bone regeneration and dental uses 🦴🦷. These inventions reflect his deep understanding of functional materials, scalable processing, and cutting-edge manufacturing, with significant impact on electronics, biomedical, and environmental technologies 🌍🔬.

Publications 📚

Synthesis of AlON powders through a polymerization template approach by spark plasma sintering
✍️ Authors: Z. Ding, W. Zheng, F. Chen, Y. Han, J. Kim
📚 Journal: Journal of Ceramic Processing Research, 2023
🔥 Theme: AlON ceramics, spark plasma sintering, template synthesis

The effect of ceramic fiber on the rheological and mechanical properties of porous Al₂O₃ ceramics
✍️ Authors: K.N. Fatema, H. Lim, J. Hong, K. Lee, I. Kim, Ikjin
📚 Journal: Journal of Ceramic Processing Research, 2023
⚙️ Theme: Fiber-reinforced ceramics, porosity, mechanical strength

Heavy metal removal using carbon nanotube-biomorphic filters
✍️ Authors: J. Park, M. Suh, I. Kim, Ikjin
📚 Journal: Journal of Ceramic Processing Research, 2022
💧 Theme: Water purification, carbon nanotubes, biomorphic filters

Carbon nanotube filter for heavy metal ion adsorption
✍️ Authors: I. Kim, W. Zhao, J. Park, Z. Meng
📚 Journal: Ceramics International, 2021
🧲 Theme: CNT filters, environmental remediation, adsorption

Synthesis of carbon nanotubes on silicalite-1-coated biomorphic materials
✍️ Authors: J. Park, Y. Han, I. Kim, Ikjin
📚 Journal: Journal of the Korean Ceramic Society, 2021
🧬 Theme: Biomorphic templating, CNT synthesis, nanomaterials

Effect of metal catalyst on synthesis of carbon nanotube onto biomorphic materials
✍️ Authors: J. Park, Y. Choi, I. Kim, Ikjin
📚 Journal: Journal of Ceramic Processing Research, 2021
🔩 Theme: CNT growth, catalysis, template engineering

Preparation of high-temperature active zirconium boride powders via precursor route and microwave sintering
✍️ Authors: Z. Ding, X. Huang, W. Liu, I. Kim, Ikjin, Y. Han
📚 Journal: Advances in Applied Ceramics, 2021
🔥 Theme: ZrB₂ synthesis, high-temp ceramics, sintering techniques

Juan Carlos Yácono Llanos | Nanomaterials | Nanomaterials Achievement

Juan Carlos Yácono Llanos | Nanomaterials | Nanomaterials Achievement

Mr Juan Carlos Yácono Llanos, Universidad de Lima, Peru

Juan Carlos Yácono Llanos is a distinguished researcher and educator specializing in metallurgical engineering, nanomaterials, and environmental sciences. Currently pursuing a Ph.D. in Engineering and Environmental Sciences (2025), he holds a Master’s in Metallurgical Engineering (2021) and over 30 years of academic experience at Universidad de Lima, where he serves as an Associate Professor. His research includes innovative material technologies, such as Ferrate(VI) applications, adsorption techniques, and magnetoluminescent compounds. A prolific author, his works focus on corrosion studies, phytochemical analyses, and sustainable technologies. Mr. Yácono is also an active contributor to professional committees and university initiatives. 🌟🧪📘

Publication Profile

Google Scholar

Orcid

Scopus

Educational Background 🎓

Juan Carlos Yácono Llanos has an impressive academic background in engineering and environmental sciences. He is currently a Ph.D. candidate in Engineering and Environmental Sciences at the Universidad Nacional Agraria La Molina, set to complete in 2025 🎓🌱. He earned a Master’s degree in Metallurgical Engineering from the Universidad Nacional de Ingeniería in 2021 🛠️📚. His journey in engineering began at the Universidad de Lima, where he achieved his Bachelor’s degree in Metallurgical and Steel Engineering in 1987 and later became a certified Metallurgical and Steel Engineer in 1992 🔧✨. His academic foundation fuels his groundbreaking research and teaching contributions.

Professional Experience and Contributions 💼

Juan Carlos Yácono Llanos has an extensive academic and professional career at the Universidad de Lima spanning decades. Currently an Associate Professor since 2022 🧑‍🏫✨, he has previously held roles as Assistant Professor from 1992 to 2021 and Teaching Assistant starting in 1987 📘. Beyond teaching, he manages laboratories in Chemistry (2023–present) and Environmental Engineering (2022–2023) 🔬🌿. He also chairs the Biological, Chemical, and Radiological Safety Committee (since 2024) 🛡️. Additionally, he oversees cost analysis for third-party testing services (2018–2022) and actively contributes to research and innovation since 1998 📊🔍, demonstrating his multifaceted expertise and dedication.

Research Focus Area 🌱🧬

Juan Carlos Yácono Llanos focuses his research on nanomaterials, sustainable technologies, and advanced materials characterization 🧪🔬. His work emphasizes the study of natural oils, such as Sacha Inchi and Aguaymanto, analyzing their phytochemical composition and quality markers 🌱🛢️. Additionally, he explores corrosion studies, innovative uses for agricultural residues, and the development of eco-friendly materials for agriculture and industry 🌍⚙️. His recent focus on ferrate synthesis and antioxidant activity reflects his commitment to sustainable practices and environmental impact 🧑‍🔧🌿. Through multidisciplinary research, he contributes to both environmental science and metallurgical engineering, combining expertise in chemistry and technology 🚀✨.

Publication Top Notes📚🌐

Markers of quality and genuineness of commercial extra virgin sacha inchi oils

Materiales: la corrosión, su tradición y alcances

Purificación de papaína a partir de látex seco: Un estudio piloto

The effect of temperature on the rate of oxygen evolution reaction during ferrate (VI) synthesis by anodic dissolution of iron in highly alkaline media

Transformación de residuos de langostineras para la producción de alimento balanceado para tilapia y de polímeros para cobertura de semillas aplicables a la agricultura orgánica

Markers of quality and genuineness of commercial extra virgin sacha inchi oils

Characterization of Glyceridic and Unsaponifiable Compounds of Sacha Inchi (Plukenetia huayllabambana L.) Oils

Marcadores específicos de la adición de aceites de semillas en aceites comerciales etiquetados como Sacha Inchi Virgen

Obtención y caracterización fisicoquímica de aceites genuinos de sacha inchi (Plukenetia huayllabambana)

Conclusion 🔍

Given his substantial background in metallurgical engineering, nanomaterials research, and environmental applications, along with impactful academic and professional achievements, Mr. Juan Carlos Yácono Llanos is indeed well-suited for roles that demand expertise in nanomaterials research and innovation.

Raju Khan | Nanomaterials | Best Researcher Award

Raju Khan | Nanomaterials | Best Researcher Award

Dr Raju Khan, Advanced Materials and Processes Research Institute CSIR, India

Dr. Raju Khan is a renowned Senior Principal Scientist and Professor at CSIR-AMPRI, Bhopal, specializing in biomedical engineering and biosensor technologies. With a Ph.D. in Chemistry, his research focuses on the synthesis of nanomaterials for point-of-care diagnostics, including fluorescence/electrochemical biosensors and BioMEMS. Dr. Khan has received prestigious awards like the BOYSCAST Fellowship and Fast Track Young Scientist Award. His impactful publications, particularly in cancer and COVID-19 diagnostics, have been highlighted in Nature India. A global leader in nanotechnology and biomedical innovation, his work continues to shape diagnostic advancements for health and environmental sustainability. 🧑‍🔬🔬🌍💡

Publication Profile

Google Scholar

Educational Background 🎓

Dr. Raju Khan completed his Ph.D. in Chemistry in 2005 from Jamia Millia Islamia, New Delhi. His impressive career spans across various prestigious institutions, including his current role as Senior Principal Scientist & Professor at CSIR-AMPRI, Bhopal, since 2022. Previously, he held positions as Principal Scientist & Associate Professor at CSIR-AMPRI (2018–2022) and CSIR-NEIST, Jorhat (2012–2018). He has also served as a Visiting Scientist at the University of Texas, San Antonio, and worked as a Postdoc at the University of the Western Cape, South Africa. Throughout his career, he has contributed extensively to biomedical research and innovation. 🎓🔬🌍👨‍🔬

Research Focus Area 🌱🧬

Dr. Raju Khan research focus is primarily on Biomedical Engineering, with a strong emphasis on Point-of-Care Diagnostics. They work on the synthesis of novel nanostructured materials for biosensor applications, enhancing the detection capabilities of medical devices. Their expertise extends to the fabrication and optimization of fluorescence and electrochemical biosensors 🧪, aiming to create efficient and sensitive diagnostic tools. They are also involved in BioMEMS (Biological Microelectromechanical Systems) and Micro/Nano fabrication systems 🔬, which are crucial for developing advanced medical devices. Additionally, their research includes the use of biomaterials for antimicrobial applications 🦠, contributing to healthcare solutions.

Award and Achievement 🏆🌍

Researcher has received prestigious awards, including the BOYSCAST Fellowship from the Department of Science & Technology (DST), India, for research at the University of Texas, USA 🇺🇸, and the Fast Track Young Scientist Award from DST, India 🏅. They also serve as a Scientific Advisor for FSSAI’s Scientific Panel on Methods of Sampling & Analysis (since 2017) 🧑‍🔬. As a Life Member of the Materials Research Society of India (MRSI) and a World Academy Member, they contribute significantly to global scientific communities 🌍. Their highlighted work in Nature India includes research on immunosensors for detecting food toxins, SARS-CoV-2 antigens, and breast cancer biomarkers 🧬, and graphene quantum dots from waste batteries 🔋.

Conference Papers Presented

Raju Khan has contributed extensively to scientific conferences worldwide, presenting on diverse topics such as oxidative degradation of surfactants, electrochemical biosensors, and nanocomposites for mycotoxin detection. His research was showcased at prestigious events like the ICC Conference in India 🇮🇳, International Conference of Electroanalysis in France 🇫🇷, and the World Congress on Biosensors in China 🇨🇳. Notable works include the development of immunosensors for Aflatoxin B1 and prostate-specific antigen (PSA) detection, as well as advancements in biosensors for drug analysis 💊. Khan’s innovations in nano-materials and biosensing technologies continue to impact environmental and medical applications.

Publication Top Notes

Iron oxide nanoparticles–chitosan composite based glucose biosensor

Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor

Nanostructured MoS2-Based Advanced Biosensors: A Review

SERS based lateral flow immunoassay for point-of-care detection of SARS-CoV-2 in clinical samples

Point-of-care biosensor-based diagnosis of COVID-19 holds promise to combat current and future pandemics

Chitosan/polyaniline hybrid conducting biopolymer base impedimetric immunosensor to detect Ochratoxin-A

Potential of graphene-based materials to combat COVID-19: properties, perspectives, and prospects

Proteomic and metabolomic approaches to biomarker discovery

Next-generation intelligent MXene-based electrochemical aptasensors for point-of-care cancer diagnostics

Electrochemical studies of novel Chitosan/TiO2 bioactive electrode for biosensing application

Conclusion 🔍

Dr. Raju Khan’s multidisciplinary research, impactful publications, and extensive contributions to biomedical engineering, biosensors, and nanomaterials make him a highly deserving candidate for the Best Researcher Award. His work continues to pave the way for innovative diagnostic technologies, improving human health and environmental sustainability worldwide.