Dr. Rohit Kumar Pant | Thin Film Technologies | Material Scientist Award

Dr. Rohit Kumar Pant | Thin Film Technologies | Material Scientist Award

University of Maryland | United States

Dr. Rohit Kumar Pant is a highly accomplished materials scientist whose work spans epitaxial thin films, quantum materials, superconductors, combinatorial materials science, and advanced device fabrication. He is recognized for his strong technical command of Molecular Beam Epitaxy, Pulsed Laser Deposition, Magnetron Sputtering, and a wide range of structural, electrical, and spectroscopic characterization tools, positioning him as a key contributor to both fundamental and applied research in electronic and quantum materials. His research output includes 31 scientific documents, collectively cited 559 times by 400 documents, reflecting a significant scholarly impact supported by an h-index of 15. Dr. Pant has played leading roles in developing complex quantum heterostructures, superconducting thin-film libraries, epitaxial oxide and nitride systems, and high-throughput materials platforms that accelerate discovery across thermoelectric, ferroelectric, optoelectronic, and quantum device technologies. His work includes the design and fabrication of photodetectors, Josephson junctions, resonators, and advanced prototype devices, along with major contributions to cleanroom operations, tool maintenance, and training of research personnel. He has collaborated with major academic, national laboratory, and industry partners on multidimensional projects involving machine learning–guided materials optimization, nanoscale device engineering, and the exploration of emergent electronic phases. Dr. Pant is also an active reviewer for high-impact scientific journals and has contributed to numerous invited talks, conference presentations, and mentorship initiatives. Known for his analytical rigor, problem-solving ability, and innovative approach to materials design, he continues to advance scientific understanding and technological applications within quantum information science, thin-film engineering, and next-generation electronic devices.

Profiles: Scopus | Google Scholar

Featured Publications

Liu, Y., Slautin, B., Bemis, J., Proksch, R., Pant, R., Takeuchi, I., Udovenko, S., Trolier-McKinstry, S., & Kalinin, S. V. (2025). Reward based optimization of resonance-enhanced piezoresponse spectroscopy. Applied Physics Letters, 126(4).

Oh, J. H., Nam, K., Kim, D., Lee, D., Park, J., Pant, R., Kang, M., Takeuchi, I., & Lee, S. (2025). Stoichiometry effect on the structure and phase of antiperovskite Sr₃SnO thin films prepared using combinatorial co-sputtering. Applied Physics Letters, 126(3).

Biswas, A., Vasudevan, R., Pant, R., Takeuchi, I., Funakubo, H., & Liu, Y. (2025). SANE: Strategic autonomous non-smooth exploration for multiple optima discovery in multi-modal and non-differentiable black-box functions. Digital Discovery, 4(3), 853-867.

Zheng, D. J., Iriawan, H., Pant, R., Eom, C. J., Xu, H., Peng, J., Arase, C., Takeuchi, I., & others. (2025). In situ fluorescence imaging of oxygen evolution on epitaxial perovskite films with composition gradients. ACS Catalysis, 15(11), 8776-8787.

Yoon, H., Wong, T., Pant, R., Baek, S., Saha, S. R., Zhang, X., Paglione, J., Lee, S., & others. (2025). Topological YB₆/SmB₆/YB₆ trilayer Josephson junctions. SMT.

Dr. Rodolpho Vaz | Thin Film Technologies | Editorial Board Member

Dr. Rodolpho Vaz | Thin Film Technologies | Editorial Board Member

Stony Brook University | United States

Dr. Rodolpho Fernando Vaz is a highly accomplished materials scientist and mechanical engineer recognized for his impactful research in advanced coatings, thermal spray technologies, cold spray additive manufacturing, and surface engineering solutions that address industrial challenges across energy, aerospace, oil and gas, automotive, and manufacturing sectors. With a strong foundation in metallurgy, materials performance evaluation, mechanical characterization, and wear and corrosion behavior analysis, he has established himself as a leading expert in high-performance coating technologies and the enhancement of material durability in extreme service environments. Dr. Vaz has demonstrated significant scholarly influence within the global research community, evidenced by 539 citations generated by 400 documents, with an h-index of 14 and a publication record consisting of 42 documents indexed in major scientific databases. His body of work includes high-impact publications, award-winning articles, and collaborative research outputs developed with international academic laboratories and industrial partners. He has contributed pioneering advancements in cold spray additive manufacturing, including geometric control of metallic components, novel deposition strategies, mechanical property optimization, and integration of graphene and nanomaterials into titanium and steel coatings, contributing to major technological improvements in surface protection, structural repair, and thermal barrier performance. In addition to his research achievements, Dr. Vaz has served in university teaching roles, contributed more than two thousand instructional lecture hours, supervised academic projects, and delivered keynote presentations and invited lectures in scientific congresses. He is an active member of scientific journal peer-review communities, completing more than two hundred and fifty manuscript reviews, and has served on academic evaluation committees at multiple educational levels. His professional mission emphasizes innovation, sustainability, and the development of advanced materials engineering technologies that reduce industrial costs, improve reliability, and support global transitions toward cleaner, safer, and more efficient infrastructure. Driven by scientific excellence and interdisciplinary collaboration, he continues to expand the boundaries of coating science, material performance, and engineering applications.

Profile: Scopus

Featured Publications

Effect of Additive Manufacturing Parameters on PLA, ABS, and PETG Strength. (2025). Processes. Open access.

Influence of the fuel and high-velocity spray technique on corrosion and antifouling properties of Cu coating. (2025). Journal of Thermal Spray Technology.

Cold-sprayed Ti-carbon nanofibers: Study of conductive and electrochemical properties. (2025). Journal of Thermal Spray Technology.

The critical role of liquid surface tension in determining cavitation erosion and dry wear performance of WC-17Co coatings produced by cold spray technology. (2025). Tribology International.

Mr. Arif Aziz | Thermodynamics of Materials | Best Researcher Award

Mr. Arif Aziz | Thermodynamics of Materials | Best Researcher Award

Mr. Arif Aziz is a PhD student at Harbin Engineering University specializing in mechanical and power engineering with a focus on turbomachinery. He holds a Bachelor’s in Mechanical Engineering and a Master’s in Power Engineering and Engineering Thermophysics. His work explores advanced two-phase flow dynamics and working fluid mixtures in closed Brayton cycle compressors, with contributions to conference proceedings and peer-reviewed journals. His research is directed toward enhancing compressor performance and improving power cycle efficiency for applications in next-generation energy systems.

Mr. Arif Aziz | Harbin Engineering University | China

Profile

SCOPUS

Education

Mr. Aziz completed his Bachelor’s degree in Mechanical Engineering, followed by a Master’s degree in Power Engineering and Engineering Thermophysics, where he focused on aerodynamic analysis and optimization of compressors. Currently, he is pursuing his PhD at Harbin Engineering University in the same field, concentrating on developing optimized compressor designs for binary gas mixtures like helium-xenon and helium-nitrogen. His educational journey reflects a progressive specialization in fluid mechanics and turbomachinery design, providing a solid academic foundation for high-level research.

Experience

Mr. Arif Aziz has developed extensive experience in the field of turbomachinery and advanced power cycles through both academic research and practical design work. His expertise lies in two-phase flow analysis, compressor optimization, and the use of binary gas mixtures such as helium-nitrogen and helium-xenon for closed Brayton cycle applications. He has completed research projects on axial flow compressor optimization and is currently engaged in the design and performance evaluation of compressors for advanced energy systems. His work has been presented at academic conferences and published in peer-reviewed journals, contributing to the advancement of thermal engineering knowledge.

Research Contributions

Mr. Aziz has completed a research project on the optimization of an axial flow compressor and is presently engaged in a project investigating the thermodynamic and aerodynamic behavior of binary gas mixtures in closed Brayton cycle compressors. His research aims to enhance efficiency, stability, and power density in advanced energy systems. With publications in international journals such as Case Studies in Thermal Engineering and Journal of Hydrogen Energy, he contributes valuable insights into energy-efficient turbomachinery systems.

Research Focus

Mr. Aziz’s primary research focus lies in understanding and improving two-phase flow dynamics and working fluid interactions in compressors for closed Brayton cycles. His studies target helium-based mixtures to optimize cooling, efficiency, and power density, which are vital for nuclear and solar-thermal power generation. By combining experimental and computational techniques, he aims to deliver novel compressor designs that address energy efficiency challenges in next-generation power systems.

Publications

Optimization of an Axial Flow Compressor Cooling: A Numerical Study on Enhanced Wet Compression Technology
Authors: Arif Aziz, Ghulam Ishaque, Naseem Ahmad, Muhammad Haris

CO2 Capture Using Mixed Amines: Experimental DFT Investigation with Focus on Improvements in Cyclic Efficiency and NO Interference
Authors: Muhammad Haris, Arif Aziz, Muhammad Sohail, Waseem Sardar

Aerodynamic Performance Investigation of an Axial Flow Compressor Under Water Ingestion
Authors: Ghulam Ishaque, Qun Zheng, Naseem Ahmad, Arif Aziz

The Influence of the Casing Grooves on the Performance of an Axial Compressor
Authors: Naseem Ahmad, Ghulam Ishaque, Arif Aziz, Qun Zheng

Adaptive Multiplexing Technique for Mobile Networks Based on SNR
Authors: Abdul Ahad Dilshad, Muhammad Irfan, Adil Malik, Arif Aziz

Conclusion

Mr. Arif Aziz is an emerging researcher with a strong academic background, focused research direction, and contributions to improving energy system performance through turbomachinery innovations. His work is impactful for future clean energy solutions and demonstrates the potential for broader applications in advanced power cycles. These qualities collectively make him a suitable and competitive candidate for the Best Researcher Award.

Assist. Prof. Dr Mehdi Aliaghayee | Materials for Energy Applications | Best Researcher Award

Assist. Prof. Dr Mehdi Aliaghayee | Materials for Energy Applications | Best Researcher Award

Assist. Prof. Dr. Mehdi Aliaghayee is a faculty member at the Islamic Azad University, Boukan Branch, specializing in microelectronics. He earned his Ph.D. from Amirkabir University of Technology, focusing on the design and fabrication of dye-sensitized solar cells. His recent work has concentrated on the numerical modelling of perovskite solar cells, combining simulation and experimental methods to improve photovoltaic performance. With multiple publications in high-impact journals, he has demonstrated a strong commitment to advancing renewable energy technologies.

Assist. Prof. Dr Mehdi Aliaghayee | Islamic Azad University | Iran

Profiles

SCOPUS

GOOGLE SCHOLAR

Education

Dr. Aliaghayee obtained his doctoral degree from Amirkabir University of Technology, where he specialized in the design and fabrication of novel dye-sensitized solar cells. His academic training provided him with a deep understanding of both the theoretical and practical aspects of photovoltaic materials and device engineering. This foundation has enabled him to explore emerging solar technologies, particularly perovskite-based devices, through innovative design and optimization approaches.

Experience

As an assistant professor at the Islamic Azad University, Boukan Branch, Dr. Aliaghayee has led several research projects focusing on solar energy device optimization. His work includes numerical modelling of perovskite and dye-sensitized solar cells using advanced simulation tools such as SCAPS-1D. His professional portfolio includes leadership in research, authorship of multiple SCI and Scopus-indexed publications, and contributions to the academic development of students in microelectronics and photovoltaic technology.

Research Focus

Dr. Aliaghayee’s research is centered on the development and optimization of high-efficiency solar cells. His work integrates numerical modelling, material engineering, and device architecture to enhance the performance of perovskite and dye-sensitized solar cells. Through computational simulation and experimental validation, he seeks to address critical challenges in stability, light absorption, and energy conversion efficiency, contributing to the global push for sustainable and cost-effective renewable energy solutions.

Publications

Optimization of the perovskite solar cell design with layer thickness engineering for improving the photovoltaic response using SCAPS-1D
Authors: M. Aliaghayee
Journal: Journal of Electronic Materials, 52 (4), 2475–2491

Development of Macro-Porous Silicon Based Dye-Sensitized Solar Cells with Improved Light Trapping
Authors: M. Aliaghayee, H. Ghafoori Fard, A. Zandi
Journal: Journal of Electrochemical Science and Technology, 7 (3), 218–227

A new method for improving the performance of dye sensitized solar cell using macro-porous silicon as photoanode
Authors: M. Aliaghayee, H. Ghafoori Fard, A. Zandi
Journal: Journal of Porous Materials, 22 (6), 1617–1626

Analytical extraction of the single-diode model parameters for macro-porous silicon-based dye-sensitized solar cells using Lambert W-function
Authors: M. Aliaghayee
Journal: Journal of Solid State Electrochemistry

Recursive Least Squares Fuzzy Modeling of Chemoresistive Gas Sensors for Drift Compensation
Authors: M. Aliaghasarghamish, S. Ebrahimi
Journal: 2011 International Symposium on Innovations in Intelligent Systems and Applications (INISTA)

An overview of the numerical modeling, simulation, and optimization methods: toward the design of highly efficient planer perovskite solar cells
Authors: M. Aliaghayee
Journal: Discover Electronics, 1 (1), 35

Conclusion

Assist. Prof. Dr. Mehdi Aliaghayee’s focused expertise, innovative research in solar cell technology, and strong academic output make him a credible candidate for the Best Researcher Award. With increased international collaboration, industrial engagement, and interdisciplinary exploration, he has the potential to further elevate his standing as a leader in renewable energy research.

Dr. Jingna Liu | Thermodynamics of Materials | Best Researcher Award

Dr. Jingna Liu | Thermodynamics of Materials | Best Researcher Award

Dr. Jingna Liu is an Assistant Professor at Sun Yat-sen University, with a doctoral degree in Soil Science from the University of Copenhagen. Her academic foundation bridges advanced environmental science and agricultural sustainability. After completing her Ph.D., she began her research and teaching career in China, focusing on soil fertility and agricultural waste valorization. Her professional trajectory demonstrates a commitment to improving nutrient management and promoting sustainable agriculture through interdisciplinary and applied research.

Dr. Jingna Liu | Sun Yat-Sen University | China

Profile

SCOPUS

Education

Dr. Liu earned her Ph.D. in Soil Science from a leading European institution, where she specialized in nutrient cycling and soil health. Her education integrated core aspects of environmental sustainability, microbiology, and agricultural chemistry. The combination of European academic standards and applied agricultural focus equipped her with both theoretical insight and practical skill, enabling her to address complex challenges in agricultural waste management and soil resource efficiency.

Experience

Dr. Liu has developed her academic career as an Assistant Professor at Sun Yat-sen University. She has completed and led multiple research projects related to agricultural waste recycling and soil fertility enhancement. Her experience includes both academic research and consultancy collaborations with industry stakeholders, contributing to real-world applications of her findings. With an active presence in both research and academic mentoring, she plays a significant role in advancing sustainable agricultural practices.

Contribution

Dr. Jingna Liu’s research has made pivotal contributions to sustainable agriculture by optimizing the thermal drying process of solid digestate. Her work uncovered the fundamental mechanisms of nitrogen transformation and demonstrated that acidification prior to drying significantly reduces ammonia (NH₃) volatilization while enhancing plant-available nitrogen. This innovation boosts the fertilizer value of dried digestate, enabling its conversion into a nutrient-rich organic fertilizer. By improving nutrient retention and reducing dependency on synthetic fertilizers, her findings support circular agriculture, waste valorization, and improved environmental stewardship.

Research Focus 

Dr. Liu’s research focuses on the recycling and utilization of agricultural solid waste, soil fertility enhancement, and nitrogen use efficiency. She investigates thermal drying and acidification processes to optimize nitrogen retention and reduce environmental emissions. Her work emphasizes the transformation of organic waste into effective fertilizers, offering solutions for improving soil health and reducing dependence on chemical inputs. Her studies provide scientific insights that support practical applications in sustainable farming systems.

Publications

Effect of Acidification on Nitrogen Transformation of Solid Digestate During Thermal Drying
Authors: Weimin Wu, Jingna Liu
Journal: Published July 2025

Acidification Prior to Drying of Digestate Solids Affects Nutrient Uptake and Fertilizer Value When Applied to Maize
Authors: Jingna Liu, Dorette Sophie Müller-Stöver, Lars Stoumann Jensen
Journal: Published September 2024

Comparison of Alum and Sulfuric Acid to Retain and Increase the Ammonium Content of Digestate Solids During Thermal Drying
Authors: Jingna Liu, Lars Stoumann Jensen, Dorette Müller-Stöver
Journal: Published June 2021

Acidified Animal Manure Products Combined with a Nitrification Inhibitor Can Serve as a Starter Fertilizer for Maize
Authors: Iria Regueiro, Peter Siebert, Jingna Liu, Lars Stoumann Jensen
Journal: Published December 2020

Methane Emission and Soil Microbial Communities in Early Rice Paddy as Influenced by Urea-N Fertilization
Authors: Jingna Liu, Huadong Zang, Heshui Xu, Zhaohai Zeng
Journal: Published December 2019

Increased Retention of Available Nitrogen During Thermal Drying of Solids of Digested Sewage Sludge and Manure by Acid and Zeolite Addition
Authors: Jingna Liu, Andreas de Neergaard, Lars Stoumann Jensen
Journal: Published September 2019

Conclusion

Dr. Jingna Liu is a promising and impactful researcher contributing to the advancement of sustainable agriculture through innovative research on nutrient recycling and soil fertility. Her scientific insights into nitrogen retention and emissions reduction place her as a suitable candidate for the Best Researcher Award. With expanded global engagement and broader application of her findings, she is well-positioned to become a leading figure in environmental soil science and sustainable waste management.

Dr. Swami Nath Maurya | Thermodynamics of Materials | Best Researcher Award

Dr. Swami Nath Maurya | Thermodynamics of Materials | Best Researcher Award

Dr. Swami Nath Maurya is a Postdoctoral Researcher at the National Chin-Yi University of Technology (NCUT) in Taiwan, specializing in thermal management and precision manufacturing. He holds a Ph.D. in Precision Manufacturing, a Master’s in Green Energy Technology, and a B.Tech. in Instrumentation and Control Engineering. With 13 SCIE-indexed journal publications and an h-index of 5, Dr. Maurya merges experimental research with AI modeling to optimize energy and material efficiency. His multidisciplinary expertise spans semiconductors, machine tools, and advanced thermal systems.

Dr. Swami Nath Maurya | National Chin-Yi University of Technology | Taiwan

Profile

SCOPUS

ORCID

GOOGLESCHOLAR

Education 

Dr. Maurya’s academic journey is marked by a solid foundation in engineering and sustainability. He earned his B.Tech. in Instrumentation and Control Engineering, followed by a Master’s in Green Energy Technology, which underpins his commitment to sustainable development. He then pursued a Ph.D. in Precision Manufacturing, focusing on intelligent process optimization. This academic progression reflects his strong theoretical understanding and applied engineering acumen in the areas of energy efficiency, thermal modeling, and manufacturing systems.

Experience

Dr. Maurya has worked extensively as a postdoctoral researcher, contributing to thermal management in machine tool systems, semiconductor crystal growth (Czochralski process), and graphene-enhanced membranes. He has authored studies on AI-driven optimization, multiobjective cooling, and microfluidic heat sink design. His work is known for solving practical engineering problems with academic rigor, and he collaborates across Taiwan and India. Despite having no current patents or editorial roles, his contributions stand out for their technical depth and industrial relevance.

Contributions 

Dr. Swami Nath Maurya has made significant contributions to thermal management, semiconductor process optimization, and sustainable material engineering. His research includes the Czochralski crystal growth process, graphene-based membranes, and hybrid cooling systems for enhanced energy efficiency and system reliability. His 13 SCIE-indexed publications (h-index: 5) reflect innovation at the intersection of AI, thermal modeling, and advanced manufacturing. From machine tool spindle cooling to microfluidic heat sinks, his work promotes intelligent, eco-conscious engineering practices for future-ready industries.

Research Focus 

Dr. Maurya’s research centers on thermal deformation modeling, energy-efficient systems, and AI-enhanced process optimization. His work targets complex engineering challenges in machine tools, semiconductor manufacturing, and sustainable material processing. He employs finite element methods, Monte Carlo simulations, and neuro-fuzzy inference systems to optimize system efficiency. By bridging artificial intelligence, green energy, and manufacturing, he is contributing to next-generation, eco-conscious industrial solutions.

Publications

Performance and Economic Enhancement of a Dewaxing Casting Process Using a Heat Pump Drying System
Authors: Win-Jet Luo, Amir Reza Ansari Dezfoli, Swami Nath Maurya, Bivas Panigrahi, Pei-Tang Wang
Journal: Case Studies in Thermal Engineering (2025)

Performance Analysis of Energy Recovery Membrane Coated with Graphene Oxide
Authors: Win Jet Luo, Prateek Negi, Swami Nath Maurya, Bivas Panigrahi, Janet Syah Putra Telaumbanua
Journal: Materials Research Express (2025)

Efficient Heat Dissipation with Hybrid Composite-Based Microfluidic Heat Sinks in Flexible Electronics
Authors: Pramod Vishwakarma, Swami Nath Maurya, Win Jet Luo, Bivas Panigrahi
Journal: Journal of Micromechanics and Microengineering (2025)

Optimization of Machine Tool Spindle Cooling for Enhancement of Thermal Prediction Accuracy and Energy Efficiency
Authors: Cheng-Kai Huang, Tsung-Chia Chen, Kun-Ying Li, Yuan-Hong Tsai, Swami Nath Maurya
Journal: International Journal of Precision Engineering and Manufacturing-Green Technology (2025)

Data-Driven Approach for Optimizing the Czochralski Process and Predictive Modeling: A Finite Element and Machine Learning Analysis
Authors: Swami Nath Maurya, Amir Reza Ansari Dezfoli, Li-Shang Lin
Journal: The International Journal of Advanced Manufacturing Technology (2025)

Process Parameter Optimization in Czochralski Growth of Silicon Ingots: A Monte Carlo-Finite Element Coupled Model
Authors: Amir Reza Ansari Dezfoli, Swami Nath Maurya, Zary Adabavazeh, Yi-Jen Huang
Journal: The International Journal of Advanced Manufacturing Technology (2025)

Impact of Top Cooling on Defect Suppression in Large-Scale Silicon Ingot Manufacturing
Authors: Yi-Jen Huang, Swami Nath Maurya, Amir Reza Ansari Dezfoli
Journal: The International Journal of Advanced Manufacturing Technology (2025)

Prof. Dr Suhaiza Zailani | New Energy Materials | Best Researcher Award

Prof. Dr Suhaiza Zailani | New Energy Materials | Best Researcher Award

Prof. Dr. Suhaiza Zailani is a renowned expert in Supply Chain Management (SCM), specializing in sustainability and halal logistics. She holds a Ph.D. in Management Science and MSc in Operational Research from Lancaster University 🇬🇧. A Professor at the University of Malaya 🇲🇾, she has published over 200+ papers, achieving an H-index of 63 📊. She has led the UM Entrepreneurship Center and currently directs the Ungku Aziz Center, promoting societal impact 🤝🌍. Recognized with global honors 🏅, including Top UM Researcher, Prof. Suhaiza is a leader in academic excellence, innovation, and community development 💡📘.

Prof. Dr Suhaiza Zailani, University of malaya, Malaysia

Profile

SCOPUS

ORCID

GOOGLESCHOLAR

🎓 Education 

Prof. Dr. Suhaiza Zailani holds a distinguished academic foundation with a Ph.D. in Management Science 🎓 and a Master’s in Operational Research 📈, both from the renowned Lancaster University, United Kingdom 🇬🇧. She began her academic journey with a Bachelor’s degree in Agribusiness 🌾 from Universiti Pertanian Malaysia 🇲🇾. Her multidisciplinary education bridges business strategy, analytics, and agricultural economics, providing the intellectual depth necessary for her groundbreaking work in sustainable supply chain management, halal logistics, and green innovation 🔄♻️. Her global academic exposure enhances her ability to drive impactful, cross-border research and policy contributions.

🏛️ Experience 

Prof. Dr. Suhaiza Zailani has been serving as a Professor of Operations at the University of Malaya, Kuala Lumpur 🇲🇾, since January 2013. With over a decade of experience at Malaysia’s premier university, she has led groundbreaking research in supply chain management, sustainability, and Islamic logistics 📦🌱📘. Her roles have extended beyond academia, including leadership as the Director of UM Entrepreneurship Centre (UMEC) and advisory contributions to national policy and industry reform. Her work bridges theory and practice, earning her widespread recognition as a thought leader in sustainable and ethical business innovation. 🧠🏅🌍

🏅 Honors and Global Impact

Prof. Dr. Suhaiza Zailani has received numerous prestigious accolades for her pioneering contributions to sustainability, halal logistics, and green innovation. 🏅 Her recognitions include the Malaysia Scopus Research Excellence Award (2024) 🧪, Top Research Scientists Malaysia 🧠, Editor’s Choice Award by Elsevier ✍️, and being named among the World’s Top 2% Scientists 🌐. She has earned multiple gold, silver, and bronze innovation medals 🥇🥈🥉 for transformative models in logistics and circular supply chains. Her academic excellence is matched by her real-world influence, policy advisory roles, and thought leadership in sustainability and entrepreneurship 💼🌱.

📖 Books

Prof. Dr. Suhaiza Zailani has authored and co-authored over 15 influential books and chapters, covering a wide spectrum of themes including green supply chain management 🌍, halal logistics 🕌, solid waste management ♻️, corporate social responsibility 💼, and lean operations optimization 🏭. Her latest works like “Shifting from Green to Sustainable to Circular in Supply Chains” exemplify her dedication to regenerative economy models 🔄. These publications are not only foundational in academia but also serve as practical references for industry, contributing to global discourse on resilient, ethical, and circular business practices 🌐.

🕌 Research Project

Prof. Dr. Suhaiza Zailani has led and co-led over 40 national and international research projects across diverse sectors including poverty eradication 🧺, sustainable supply chains 🔄, halal logistics 🕌📦, circular economy ♻️, energy transformation ⚡, and urban entrepreneurship 🏙️📈. As Principal Investigator for impactful grants like BMTKM and Eco-Circular Framework, and as a collaborator on FRGS and MOHE-funded studies, she combines academic excellence with real-world application. Her research empowers policy design, environmental innovation, and inclusive economic development, demonstrating a strong commitment to Malaysia’s sustainable future and global academic leadership. 🌟📚🇲🇾

🌱 Innovation & Patent Contributions 

Prof. Dr. Suhaiza Zailani has made significant strides in innovation with multiple university and national-level patents focusing on sustainable and halal-centric supply chains. Her patented works include the Halal Squad initiative 🕌, Halal Food Supply Chain Integrity Cumulative Capability (HFSCI-CC) Model, and the Toolkit for Halal Orientation Strategy for food firms 🍛. She also developed the Green Innovation Toolkit (GIT) 🌱 to support SMEs, and tools like the Strategic REVSV Model 🔄 for reverse logistics and Returns Management Process Models 📦. These innovations bridge academic research and industry needs, enhancing practical sustainability and operational integrity.

🔍 Research Focus 

Prof. Dr. Suhaiza Zailani’s research encompasses sustainable supply chains, green innovation, climate-smart agriculture, and industry 4.0 impacts 🌱🏭. She explores transformational topics such as blockchain and crowdfunding 🔗💰, net energy metering (NEM) ☀️⚡, and circular carbon economy 🔄🌍. Her recent works analyze innovation capabilities in Southeast Asia, sustainable agropolitan planning, and the post-pandemic manufacturing landscape. With a strategic blend of data analytics, policy evaluation, and hybrid research methodologies, she contributes actionable insights to both academia and industry. Her studies drive forward global sustainability goals and promote technological adoption in developing economies 🌐📊💡.

📚 Publications 

Factors influencing households’ willingness to continue as a net energy metering (NEM) prosumer in Malaysia
Journal: Sustainable Futures, 2025
Authors: Suhaiza Zailani, et al.
📘 Focus: Renewable energy, household sustainability, energy policy.

Analyzing innovation capability: a case study of Timor Leste Business School and Indonesia Business School
Journal: Higher Education Skills and Work Based Learning, 2025
Authors: Suhaiza Zailani, et al.
📘 Focus: Innovation, higher education, institutional performance.

Exploring Determinants of and Barriers to Climate-Smart Agricultural Technologies Adoption in Chinese Cooperatives: A Hybrid Study
Journal: Agriculture Switzerland, 2025
Authors: Suhaiza Zailani, et al.
📘 Focus: Agricultural technology, climate change adaptation.

Impact of Industry 4.0 on sustainability of Malaysia’s manufacturing industry in post-COVID era
Journal: Foresight, 2025
Authors: Suhaiza Zailani, et al.
📘 Focus: Industry 4.0, post-pandemic recovery, sustainability.

Navigating the landscape of public–private partnership research: a novel review using latent Dirichlet allocation
Journal: [Open Access Journal, name not shown], 2025
Authors: Suhaiza Zailani, et al.
📘 Focus: PPPs, research analytics, policy review.

Factors Influencing Circular Carbon Economy Readiness Among Heavy Industries in China
Journal: Sustainability Switzerland, 2025
Authors: Suhaiza Zailani, et al.
📘 Focus: Circular economy, industry readiness, climate action.

 Agropolitan Planning as a Strategy for Promoting Sustainable Living Among Rural Poor Communities: Empirical Evidence
Journal: Planning Malaysia, 2025
Authors: Suhaiza Zailani, et al.
📘 Focus: Rural development, urban planning, poverty alleviation.

Capabilities and Resources for Value Creation and Sustainable Competitive Advantage: A Study of the Chinese Video Game Industry
Journal: Sustainability Switzerland, 2025
Authors: Suhaiza Zailani, et al.
📘 Focus: Competitive strategy, entertainment industry, sustainability.

The Antecedents of the Willingness to Adopt and Pay for Climate-Smart Agricultural Technology Among Cooperatives in China
Journal: Sustainability Switzerland, 2025
Authors: Suhaiza Zailani, et al.
📘 Focus: Green technology, cooperative behavior, agriculture.

Dr SOOK SAM LEONG | Materials Science | Best Researcher Award

Dr SOOK SAM LEONG | Materials Science | Best Researcher Award

Dr. Sook Sam Leong 🎓🩻 is a Senior Lecturer and Clinical Researcher at Universiti Teknologi MARA, Malaysia. With over 20 years of experience in diagnostic imaging, she specializes in medical ultrasound, renal imaging, radiation safety, and AI in radiology 🧠🔬. Her impactful work includes shear wave elastography, MRI training in VR, and fatty liver assessment via ultrasound 🧪💻. She has authored 20+ peer-reviewed articles in top journals 📚🌍 and received multiple awards 🏆 for innovation and scientific merit. A passionate educator and grant leader, Dr. Leong advances clinical imaging through research, mentorship, and international collaboration 🤝✨.

Dr SOOK SAM LEONG, UNIVERSITI TEKNOLOGI MARA, Malaysia

Profile

SCOPUS

ORCID

GOOGLESCHOALR

🎓 Education

Dr. Sook Sam Leong 🎓 has a distinguished academic background in medical imaging and ultrasound. She earned her PhD in Medical Ultrasound with Distinction from the University of Malaya in 2020 🥇, following her Master in Medical Science (Ultrasound) in 2013. Her academic journey began with a Diploma in Medical Radiography (2003) 🏥 from the same university. In 2007, she completed a B.Sc. in Radiographic Science at the University of Teesside with First Division Honors 🏆. She also trained at Jefferson Ultrasound Research and Education Institute (JUREI) in 2004, completing a Basic Abdominal Ultrasound Course 🔬📸.

👩‍⚕️Experience

Dr. Sook Sam Leong brings over 20 years of multidisciplinary clinical and academic experience in diagnostic imaging 🏥🩻. Starting as a Senior Radiographer at University of Malaya Medical Centre (2003–2021) and now a Senior Lecturer at Universiti Teknologi MARA (UiTM), she has specialized in ultrasound, CT, MRI, radiation protection, and digital radiography 💻🔬. She has served on ethics, program planning, and medical technology committees 🧠📊, and contributed as a consultant for Philips Ultrasound and Malaysia’s Ministry of Health. An accomplished educator 🎓, she has taught ultrasound and CT at leading universities, mentoring the next generation of radiology professionals 🧑‍🏫🌟.

🏆 Awards 

Dr. Leong has earned multiple prestigious awards including the 🥇 Best Innovation Award (UiTM, 2023), 🥈 Best Researcher Award (2022), and 🎖️ Outstanding Scientific Merit Award (AACRT, 2023). Her accolades reflect her excellence in clinical imaging, innovation, and scientific impact. She also secured competitive research funding 💰, leading the FRGS grant (RM108,600, 2023–2025) and multiple university-backed projects. Her recognition spans oral presentations, poster excellence, and quality improvement awards, demonstrating sustained excellence across academic, clinical, and translational domains 🧪📊👩‍⚕️.

🖥️ Expertise 

Dr. Leong is a highly skilled expert in Ultrasound 🧪, Computed Tomography (CT) 🖥️, and General Radiography 📷, with over two decades of experience in clinical diagnostics and medical education. Her work in ultrasound imaging includes cutting-edge research in shear wave elastography and attenuation techniques. She applies CT and radiographic methods in evaluating complex clinical cases, including renal and hepatic conditions 🩺🧬. Her commitment to precision, safety, and innovation in radiological sciences positions her as a leading voice in advancing diagnostic imaging technologies for enhanced patient care and training 🧠🌍.

🩻Contributions

Dr. Sook Sam Leong has significantly advanced ultrasound elastography, AI-assisted diagnostics, and clinical imaging 📊🧠. With over 20 WOS-indexed publications 📚 and an h-index of 11 📈, her research has revolutionized imaging for kidney disease, musculoskeletal disorders, and forensic applications 🧬🦴. As FRGS principal investigator, she explores stiffness biomarkers via shear wave elastography 💡. Her excellence is recognized with awards like AACRT 2025 Best Paper and UiTM Innovation Award 2023 🏅. Dr. Leong continues to impact global health through AI integration, collaborative research, and postgraduate mentorship 🌍🎓.

🔬 Research Focus

Dr. Sook Sam Leong’s research is centered on enhancing diagnostic accuracy using Ultrasound and Computed Tomography (CT). Her work explores cutting-edge methods like shear wave elastography for tissue stiffness evaluation, attenuation imaging for fatty liver detection, and the integration of AI and machine learning in radiological interpretation 🤖📊. She also investigates radiation safety, forensic imaging, and VR-based MRI education 🛡️🧍‍⚕️. Bridging clinical application with research, her contributions support early disease detection, patient safety, and medical education, driving innovation in non-invasive diagnostics and multidisciplinary healthcare delivery 🌍💡📈.

📚 Publications

2D shear wave elastography for the assessment of quadriceps entheses—a methodological study
👩‍🔬 SS Leong, JHD Wong, FI Rozalli, F Yahya, YC Tee, LSM Yamin, …
📘 Skeletal Radiology, 2024, Vol. 53(3), pp. 455–463

Application of entropies for automated diagnosis of abnormalities in ultrasound images: A review
👩‍🔬 Y Hagiwara, VK Sudarshan, SS Leong, A Vijaynanthan, KH Ng
📘 Journal of Mechanics in Medicine and Biology, 2017, Vol. 17(07), Article 1740012

Shear wave elastography in chronic kidney disease – the physics and clinical application
👩‍🔬 KH Ng, JHD Wong, SS Leong
📘 Physical and Engineering Sciences in Medicine, 2024, Vol. 47(1), pp. 17–29

THE ROLE OF SHEAR WAVE ELASTOGRAPHY IN POST-MORTEM CANINES
👩‍🔬 SS Leong, WK Ong, RR Azman, MNM Shah, A Vijayananthan, SF Lau
📘 Journal of Medical Imaging and Radiation Sciences, 2023, Vol. 54(3), Supplement S9

Dispersion patterns of scattered radiation exposure on phantom in CT fluoroscopy
👩‍🔬 SS Leong, N Azman, A Vijayananthan, JHD Wong
📘 Radiation Physics and Chemistry, 2025, Vol. 235, Article 112810

Defining normal enthesis stiffness range in a healthy adult population
👩‍🔬 MKJ Mahazer, SS Leong, JHD Wong, FI Rozalli, F Yahya, YC Tee, …
📘 British Journal of Radiology, 2025, Vol. 98(1167), Article 469–474

Quantifying canine tissue stiffness change patterns using shear-wave elastography: implications for time of death estimation
👩‍🔬 WK Ong, SS Leong, RR Azman, MN Md Shah, A Vijayananthan, SF Lau
📘 Australian Journal of Forensic Sciences, 2024, pp. 1–14

Dr Gevorg Gevorg | Thermodynamics of Materials | Best Researcher Award

Dr Gevorg Gevorg | Thermodynamics of Materials | Best Researcher Award

Dr. Gevorg Avágovich Grigorian 🎓📐 is a senior researcher at the Institute of Mathematics, National Academy of Sciences of Armenia 🇦🇲. His research expertise lies in ordinary differential equations (ODEs), with a special focus on oscillation theory, stability analysis, and Wiener–Hopf integral equations. 🧮🧠 He has authored over 15 peer-reviewed publications in esteemed journals such as Mathematical Notes and Monatshefte für Mathematik 📝📚. Dr. Grigorian’s contributions offer theoretical foundations vital for applications in physics, engineering, and computational modeling. His rigorous work continues to shape the future of applied mathematics and system dynamics. 🌐📊🔍

Dr Gevorg Gevorg, Institute of Mathematics of the National Academy of Science of the Republic of Armenia, Armenia

Profile

SCOPUS

Education 🎓

Dr. Gevorg Avágovich Grigorian 🎓📘 earned his advanced degrees in Mathematics from prestigious institutions in Armenia, specializing in ordinary differential equations, stability theory, and integral equations. 🧠📐 His academic foundation was built through rigorous training in classical analysis, linear algebra, and functional methods. 🏛️📊 As a product of Armenia’s elite mathematical education system 🇦🇲, Dr. Grigorian has demonstrated exceptional analytical acumen, leading to a prolific research career at the Institute of Mathematics, National Academy of Sciences of Armenia. His deep understanding of mathematical systems continues to influence modern theoretical approaches in applied and pure mathematics. 📚🔬🌍

Experience ✍️

Dr. Gevorg Avágovich Grigorian 📘🧠 has extensive experience as a mathematical researcher at the Institute of Mathematics, National Academy of Sciences of Armenia 🇦🇲. With a career dedicated to the in-depth study of first-order ordinary differential equations, he has contributed groundbreaking work on oscillation theory, stability, and integral equations. 🧮🔍 He has published in top journals like Mathematical Notes and Monatshefte für Mathematik, and is recognized for his rigorous analytical methods. 📈✍️ Dr. Grigorian’s expertise supports interdisciplinary applications across engineering, physics, and computational modeling, marking him as a key figure in mathematical innovation. 🌍📐

Research Focus 🔍

Dr. Grigorian’s research is rooted in ordinary differential equations (ODEs), with a sharp focus on oscillation theory, stability analysis, and integral equations such as the Wiener–Hopf type. 🧮 His recent work investigates solvability criteria for complex systems, aiming to bridge abstract mathematical theory with applications in physics, engineering, and signal processing. ⚙️📊 He develops new analytical frameworks for understanding nonhomogeneous systems, Riccati equations, and linear dynamical models. Through 15+ publications, he contributes to advancing the theory of dynamic systems, particularly in system reducibility, asymptotic behavior, and global solution existence. 🌐🔍📐

Publication 📘

Solvability Conditions for a Class of Wiener–Hopf Integral Equations of the First Kind 🧮📘

✍️ Author:
Gevorg Avágovich Grigorian 👨‍🏫

📚 Journal:
Mathematical Notes, 2025 📰📐

Assoc. Prof. Dr. Peeyush Kumar Kamlesh | Materials for Energy Applications | Young Scientist Award

Assoc. Prof. Dr. Peeyush Kumar Kamlesh | Materials for Energy Applications | Young Scientist Award

Assoc. Prof. Dr. Peeyush Kumar Kamlesh |  Poornima University Jaipur | India

Assoc. Prof. Dr. Peeyush Kumar Kamlesh is a distinguished physicist and materials scientist whose research bridges condensed matter physics, computational materials science, and renewable energy materials. He currently serves as Associate Professor in the Department of Physics and R&D Cell at Poornima University, Jaipur, India, and is also the Founder of Scholarly Publication India. With 33 peer-reviewed papers indexed in Scopus, 1,287 citations across 459 documents, and an h-index of 26, Dr. Kamlesh has established himself as an influential researcher in the fields of half-Heusler alloys, hybrid and double perovskites, and thermoelectric materials for sustainable energy conversion. His computational work uses advanced density functional theory (DFT) tools such as WIEN2k and BoltzTraP to analyze the structural, electronic, and thermoelectric properties of novel semiconductors. He has authored books including Advancements in Half-Heuslers: A Key to Clean Energy and Sustainable Future: Exploring Renewable Energy Solutions, and holds multiple patents on eco-friendly nanomaterials and photovoltaic applications. Dr. Kamlesh’s scientific contributions span leading journals such as Materials Chemistry and Physics, Physica B, Journal of Molecular Modeling, and Physics Scripta, where his findings on lead-free perovskite alternatives and half-Heusler compounds have advanced green energy research. As a reviewer for high-impact journals including Journal of Alloys and Compounds and Scientific Reports, he actively supports peer excellence in materials science. Beyond his research, he supervises Ph.D. students and has organized numerous international conferences and faculty development programs on research methodology. He is recognized for his Young Scientist Award and his leadership in the Centre for Research, Instrumentation & Development (CRID). Through his dedicated pursuit of innovative materials for clean energy and his commitment to academic advancement, Assoc. Prof. Dr. Peeyush Kumar Kamlesh continues to make an enduring impact on the scientific community and the sustainable future of energy materials.

Profile

SCOPUS

ORCID

GOOGLESCHOLAR

Publications

Comprehensive Theoretical Investigation of NaAlX (X = C, Si and Ge) Half-Heusler Compounds: Unveiling the Multifaceted Properties for Advanced Applications

Authors: Ghanshyam Lal Menaria, Upasana Rani, Peeyush Kumar Kamlesh, Dinesh C. Sharma, Ajay Singh Verma
Journal: International Journal of Modern Physics B (2025)

Physical Properties and Power Conversion Efficiency of SrZrX₃ (X = S and Se) Chalcogenide Perovskite Solar Cell

Authors: Naincy Pandit, Rashmi Singh, Anand Kumar, Tarun Kumar Joshi, Akash Shukla, Upasana Rani, Peeyush Kumar Kamlesh, Tanuj Kumar, Priyanka, Ajay Singh Verma
Journal: Modern Physics Letters B (2024)

Computational Investigation of the Fundamental Physical Properties of Lead-Free Halide Double Perovskite Rb₂NaCoX₆ (X = Cl, Br, and I) Materials: Potential Prospects for Sustainable Energy

Authors: Sunita Kumari, Upasana Rani, Monika Rani, Rashmi Singh, Peeyush Kumar Kamlesh, Sarita Kumari, Tanuj Kumar, Ajay Singh Verma
Journal: Modern Physics Letters B (2024)

Electro-Optic and Transport Properties with Stability Parameters of Cubic KMgX (X = P, As, Sb, and Bi) Half-Heusler Materials: Appropriate for Green Energy Applications

Authors: Ghanshyam Lal Menaria, Upasana Rani, Peeyush Kumar Kamlesh, Rashmi Singh, Monika Rani, Nihal Singh, Dinesh C. Sharma, Ajay Singh Verma
Journal: Modern Physics Letters B (2024)

Exploring Properties of Organometallic Double Perovskite (CH₃NH₃)₂AgInCl₆: A Novel Material for Energy Conversion Devices

Authors: Upasana Rani, Peeyush Kumar Kamlesh, Rashmi Singh, Tanuj Kumar, Rajeev Gupta, Samah Al-Qaisi, Kulwinder Kaur, Ajay Singh Verma
Journal: Modern Physics Letters B (2024)

Lead-Free Alternative Cation (Ethylammonium) in Organometallic Perovskites for Thermoelectric Applications

Authors: Anusha Dubey, Naincy Pandit, Rashmi Singh, Tarun Kumar Joshi, Banwari Lal Choudhary, Peeyush Kumar Kamlesh, Samah Al-Qaisi, Tanuj Kumar, Kulwinder Kaur, Ajay Singh Verma
Journal: Journal of Molecular Modeling (2024)