Dr Feryal Akay | Biomaterials | Best Researcher Award

Dr Feryal Akay | Biomaterials | Best Researcher Award

Dr. Feryal Akay is a PhD graduate in Chemistry from Dicle University (2023), specializing in human immunoglobulin G glycation and the effects of Morus nigra leaf extract on DNA glycation. She has participated in key national projects and has contributed to high-impact publications in journals like Archives of Biochemistry and Biophysics (2025) and Indian Journal of Biochemistry and Biophysics (2024). With experience as an Ar-Ge specialist at Labixir, Dr. Akay is deeply committed to advancing glycation research and is a strong candidate for the Best Researcher Award. 📚🧬🌿

Dr Feryal Akay, University of Dicle, Turkey

Profile

ORCID

SCOPUS

Education🎓

Dr. Feryal Akay completed her PhD in Chemistry at Dicle University in 2023, with a thesis on the glycation of human immunoglobulin G and its impact on antigen binding, supervised by Prof. Dr. Göksel Kızıl and Prof. Dr. Beran Yokuş. She also earned her Master’s in Chemistry from the same university in 2018, focusing on the effects of Morus nigra leaf ethanol extract on DNA glycation. Dr. Akay completed her Bachelor’s degree in Chemistry in 2015 at Dicle University’s Faculty of Science. 🎓🧪📜

Experience🩺

Dr. Feryal Akay worked as an Ar-Ge (Research and Development) Specialist at Labixir, a pharmaceutical analysis laboratory, from November 2021 to August 2022. In this role, she contributed to various research and development projects, specializing in pharmaceutical analysis and innovative techniques in the field. Her work involved analyzing and improving the efficacy of pharmaceutical products, contributing to the advancement of the pharmaceutical industry. Dr. Akay’s experience in this commercial sector allowed her to apply her academic expertise in a practical, real-world environment, further enhancing her skill set in both research and pharmaceutical development. 💊🔬🧪

Certificate 🏅

Dr. Feryal Akay has earned several prestigious certificates for her participation in international conferences. She attended the 1st International Multidisciplinary Cancer Research Congress held at Dicle University in Diyarbakır from 18-22 September 2019. She also participated in the INESEC 2018, The International Engineering Natural Science Conference, from 14-17 November 2018. Additionally, Dr. Akay presented a Oral Presentation at the 6th International Congress on Pharmaceutical Chemistry in Antalya/Belek, held by Atatürk University and the Chemists Association, from 22-25 March 2018. 🏅🎓🌍📚

Research Focus 🔬

Dr. Feryal Akay’s research primarily focuses on glycation and its impact on immune function. Her studies explore how fructose-derived glycation affects antigen binding in human IgG and lymphocytes, aiming to better understand the role of glycation in immune responses (Archives of Biochemistry and Biophysics, 2025). Additionally, Dr. Akay has investigated the inhibitory effects of Morus nigra leaf extract on DNA glycation and its potential in preventing advanced glycation end products (Indian Journal of Biochemistry and Biophysics, 2024). Her work also includes the antiglycative effects of Capsicum annuum (chili) and pyridoxamine in experimental diabetes models (Revista Brasileira de Farmacognosia, 2023). 🌱🧬🔬

Publications📚

Fructose-derived glycation and immune function: Effects on antigen binding in human IgG and lymphocytes 🧬

  • Authors: Feryal Akay, Nesrin İnceören, Cemal Nas, Beran Yokuş, Göksel Kızıl, Murat Kızıl
  • Journal: Archives of Biochemistry and Biophysics

Evaluation of ethanol extract of Morus nigra L. as an inhibitory agent for DNA-Advanced glycation end product (DNA-AGEs) 🍃

  • Authors: Feryal Akay
  • Journal: Indian Journal of Biochemistry and Biophysics

Antiglycative Effect of Combination of Extracts of Capsicum annuum (chilli) and Pyridoxamine Against Glycation in Streptozotocin-induced Experimental Diabetes in Rats 🌶️

  • Authors: Nesrin İnceören, Feryal Akay, Cemal Nas, Engin Deveci, Göksel Kızıl, Murat Kızıl
  • Journal: Revista Brasileira de Farmacognosia

Determination Of Antioxidant Activity of Dietary Selenium, Oleuropein, Glutathione Mixture 🥗

  • Authors: Feryal Akay, Göksel Kızıl
  • Journal: European Journal of Technic

Dr Xiong-Xin Lei | Biomaterials | Best Researcher Award

Dr Xiong-Xin Lei | Biomaterials | Best Researcher Award

Dr Xiong-Xin Lei, First People’s Hospital of Foshan, China

Dr. Xiong-Xin Lei, a distinguished postdoctoral researcher at the First People’s Hospital of Foshan, holds a Ph.D. in Medicine from Sichuan University. With expertise in functional hydrogels, his groundbreaking research focuses on innovative applications in endoscopic treatments, hemostasis, and wound repair. Over the last five years, Dr. Lei has authored eight high-impact papers in prestigious journals like Bioactive Materials and Advanced Science. His dedication to innovation is evident in his seven granted patents, making significant strides in biomaterials and regenerative medicine. Dr. Lei’s work exemplifies excellence in bridging science and clinical applications

Publication Profile

Scopus

Academic Background🎓

Dr. Xiong-Xin Lei has a strong academic background in medicine and biomedical engineering. 🎓 He is currently a Post-Doctoral Fellow at the First People’s Hospital of Foshan, China, since August 2022. 🏥 Dr. Lei earned his Doctor of Medicine degree from Sichuan University (2019–2022), specializing in microbiology and biochemical pharmacy. 🔬 He also holds a Master of Medicine degree (2015–2017) and a Bachelor of Engineering degree (2011–2015) from Beijing University of Chinese Medicine, focusing on biopharmaceuticals and biomedical engineering, respectively. 💊 His expertise combines advanced medicine and engineering techniques for innovative healthcare solutions. 🌟

Research Focus Area 🌱🧬

Dr. Xiong-Xin Lei specializes in the development, design, and application of functional hydrogels for biomedical purposes. 🧬 His research focuses on innovative solutions for endoscopic treatments of the digestive tract, hemostasis, and wound repair. 🩺 Over the past five years, he has made significant contributions, publishing 8 research papers in prestigious journals such as Bioactive Materials, Advanced Science, and Chemical Engineering Journal. 📚 Additionally, Dr. Lei holds 7 granted invention patents, reflecting his innovative approach to medical applications of hydrogels. 💡 His work bridges materials science and regenerative medicine for advanced healthcare solutions. 🌟

Notable Achievements

Dr. Xiong-Xin Lei has achieved remarkable success in his research career over the past five years. 🌟 He has authored eight high-impact research papers published in prestigious journals such as Bioactive Materials, Advanced Science, and Chemical Engineering Journal. 📚 His groundbreaking studies have made significant contributions to the fields of regenerative medicine and smart materials, particularly in developing innovative hydrogels for medical applications. 🧬 Dr. Lei’s work highlights his dedication to advancing healthcare solutions through cutting-edge research, earning him recognition as a leader in his field. 🩺✨

Publication Top Notes🌟📊📚

Multi-crosslinking hydrogels with robust bio-adhesion and pro-coagulant activity for first-aid hemostasis and infected wound healing

A Self-Assembly Pro-Coagulant Powder Capable of Rapid Gelling Transformation and Wet Adhesion for the Efficient Control of Non-Compressible Hemorrhage

Application of metabolomics in urolithiasis: the discovery and usage of succinate

Multifunctional two-component in-situ hydrogel for esophageal submucosal dissection for mucosa uplift, postoperative wound closure and rapid healing

Click-crosslinked in-situ hydrogel improves the therapeutic effect in wound infections through antibacterial, antioxidant and anti-inflammatory activities

Scarless Healing of Injured Vocal Folds Using an Injectable Hyaluronic Acid-Waterborne Polyurethane Hybrid Hydrogel to Tune Inflammation and Collagen Deposition

Promotion of right ventricular outflow tract reconstruction using a novel cardiac patch incorporated with hypoxia-pretreated urine-derived stem cells

 

 

Prof. Dr Yusuf ÖZCAN | Biomaterials | Best Researcher Award

Prof. Dr Yusuf ÖZCAN | Biomaterials | Best Researcher Award

Prof. Dr Yusuf ÖZCAN, Pamukkale University, Turkey

Prof. Özcan is a leading expert in bio-inspired nanomaterials and drug delivery systems, with a focus on advancing both biomedical engineering and environmental sustainability. His pioneering research has led to significant breakthroughs in the development of innovative materials that address critical health challenges and environmental concerns. With a proven track record of successful projects and publications, Prof. Özcan is known for his leadership in the field and his ability to bridge the gap between cutting-edge science and practical applications. His work continues to shape the future of healthcare and environmental solutions. 🌱🔬💉

Publication Profile

GoogleScholar

Orcid

Educational Background 🎓

Prof. Yusuf Özcan holds an M.S. and Ph.D. in Physics Engineering from Hacettepe University, Ankara, Turkey, where he gained expertise in advanced materials and their applications. He completed his B.S. in Physics at Atatürk University, Erzurum, Turkey. Prof. Özcan is currently an Associate Professor at Pamukkale University, Faculty of Technology, Department of Biomedical Engineering, where he has been shaping the future of biomedical technologies since 1992. Additionally, he has collaborated internationally, contributing to research at the National Synchrotron Radiation Research Center in Hsinchu, Taiwan, in 2006-2007. His diverse educational background fuels his innovative research in biomedical engineering. 🎓🔬🌍

Professional Experience and Contributions 💼

Prof. Yusuf Özcan is a distinguished Professor of Biomedical Engineering at Pamukkale University, with over 20 years of expertise in advanced material science. He holds a Bachelor’s in Physics from Atatürk University and a Ph.D. in Physical Engineering from Hacettepe University. His research spans stimuli-responsive polymers, bone tissue engineering, nanocomposites for drug release, and synchrotron-based nanomaterial analysis. Notable works include developing bio-nanocomposites for bone regeneration, hybrid hydrogels for controlled drug release, and eco-friendly biosensors for heavy metal detection. Prof. Özcan’s groundbreaking contributions have advanced biomedical engineering, nanotechnology, and environmental sustainability. 🎓🔬🌱

Research and Innovations

Prof. Yusuf Özcan has led over 20 national and international research projects, including TÜBİTAK and SESAME-supported studies, with an h-index of 10 and over 390 citations. His research focuses on biomedical engineering, nanocomposites, and stimuli-responsive polymers. He has published over 30 peer-reviewed articles in high-impact journals, and is actively working on bio-inspired nanomaterial patents. With collaborations across the globe, including Taiwan’s National Synchrotron Radiation Research Center (NSRRC), Prof. Özcan has made significant strides in advanced drug delivery systems and eco-friendly materials. He is also a member of the Turkish Physical Society. 🔬🌍📚

Research Focus Area 🌱🧬

Prof. Yusuf Özcan’s research primarily focuses on biomedical engineering, nanotechnology, and material science. His work includes the development of advanced biopolymeric nanomaterials for controlled drug delivery systems, innovative bone tissue scaffolds, and eco-friendly biosensors. Prof. Özcan specializes in stimuli-responsive polymers, nanocomposites, and synchrotron-based material analysis. He has made significant contributions to environmental sustainability by creating green materials and eco-friendly sensors for detecting heavy metals. His research extends to the development of hybrid films and microbeads for targeted drug release, enhancing the efficiency of therapeutic treatments. 🧬💊🌿

Publication Top Notes

Structure, antibacterial activity and theoretical study of 2-hydroxy-1-naphthaldehyde-N-methylethanesulfonylhydrazone

Synthesis, characterization, biological activities of dimethyltin (IV) complexes of Schiff bases with ONO-type donors

Characterization and Production of Extracellular Polysaccharides (EPS) by Bacillus Pseudomycoides U10

Structure and characterization of N-(2-hydroxy-1-naphthylidene) threonine

Structural and spectroscopic characteristics of two new dibenzylbutane type lignans from Taxus baccata L.

Crystallographic report: Bis {µ‐[O‐cyclopentyl (4‐methoxyphenyl) dithiophosphonato] 1κ: S, 2κ: S‐[O‐cyclopentyl (4‐methoxyphenyl) dithiophosphonato]‐1κ2S, S′} dicadmium (II)

STRUCTURAL, ELECTRICAL AND OPTICAL PROPERTIES OF THERMALLY EVAPORATED CdSe AND In-DOPED CdSe THIN FILMS.

Micellization behavior of tertiary amine-methacrylate-based block copolymers characterized by small-angle X-ray scattering and dynamic light scattering

trans-Bis [O-2, 4-di-tert-butylphenyl (4-methoxyphenyl) dithiophosphonato-κ2S, S′] nickel (II)

Crystal and Molecular Structures of trans-Nickel (II)-bis [(O-propyln)-(p-methoxyphenyl) dithiophosphonate]

Conclusion

Prof. Dr. Yusuf Özcan’s extensive body of work demonstrates not only scientific excellence but also practical contributions to pressing global challenges, making him a strong and deserving candidate for this award. His innovative approach and global collaboration signify a researcher who is pushing the boundaries of materials science and biomedical engineering.

Sailee Chowdhury | Biomaterials | Best Researcher Award

Sailee Chowdhury | Biomaterials | Best Researcher Award

Prof Sailee Chowdhury, BCDA College of Pharmacy & Technology, India

Prof. Sailee Chowdhury is a distinguished academic and researcher in pharmaceutical technology with 17+ years of teaching experience 📚✨. She holds a Ph.D. in Pharmaceutical Technology and has over 11 years of postdoctoral research experience. Her work spans flavonoids, nanoparticles, tissue engineering, and sustainable practices in drug discovery 🌿🔬. Prof. Chowdhury has published extensively in reputed journals and authored several book chapters, showcasing her commitment to knowledge dissemination 📖. As Head of the Department, she leads with excellence in education and administration 🏫🎓. Her active role in conferences and institutional committees reflects her influence and dedication to research ethics and innovation 🌍💡.

Publication Profile

Scopus

Orcid

Educational Background 🎓

Prof. Sailee Chowdhury is a highly qualified academic with a Ph.D. in Pharmaceutical Technology from MAKAUT, Kolkata, awarded in 2013 🎓🔬. She holds an M.Pharm in Pharmaceutical Chemistry with First Class honors (SGPA 9) from Biju Pattnaik University of Technology (2006) 🧪📘 and qualified GATE in 2004 🎯. Her academic journey began with a B.Pharm degree (Honors) scoring 80.3% from Burdwan University in 2004, followed by stellar performances in Higher Secondary (68%, WBCHSE, 2000) and Madhyamik (87%, WBBSE, 1998) 📚🌟. Prof. Chowdhury’s consistent academic excellence forms the foundation of her illustrious career in pharmaceutical education and research 🌍📖.

Professional Experience and Contributions 💼

Prof. Sailee Chowdhury brings over 17 years of teaching experience at BCDA College of Pharmacy & Technology, Kolkata 🎓📘, where she has progressed through roles from Lecturer to Professor and currently serves as Head of the Department of Pharmaceutical Chemistry (since April 2022) 🧪🔬. Post-Ph.D., she has over 11 years of academic and research experience 🌟. She actively contributes to UG and PG education, administrative roles, NBA accreditation, and institutional committees 📊📜. A recognized academic leader, she has organized national and international seminars, served as a reviewer for reputed journals and books, and contributed extensively to pharmaceutical education 🌍💡.

Participation in Conference Seminar & Workshops 🌐

Prof. Sailee Chowdhury has actively participated in numerous national and international conferences, seminars, and workshops, serving in roles such as Joint Convenor, Evaluator, Co-chairperson, Chairperson, Panelist, and Advisory Member 🎤📚. Highlights include the 72nd Indian Pharmaceutical Congress in Nagpur, the International Conference on Drug Discovery at Brainware University 🌍💊, and multiple events organized by institutions like Jadavpur University and Amity University 🧪📖. She has chaired scientific sessions on medicinal plants and sustainable pharmaceutical practices, fostering academia-industry partnerships, and evaluating cutting-edge research, reflecting her commitment to advancing pharmaceutical education and research 🌱🔬.

Research Focus Area 🌱🧬

Prof. Sailee Chowdhury’s research spans pharmaceutical sciences, biomaterials, and sustainable innovation 🌿🔬. Her work includes the role of flavonoids and phenolics in gut microbiota modulation and combating metabolic diseases and biotic stress 🩺🍃. She advances enzymology in drug discovery 💊🧪, sustainable practices in the pharmaceutical industry 🌍⚗️, and plant-protein-based future foods 🌱🍽️. Her expertise extends to cutting-edge biomaterials, exploring nanoparticles for gene expression and osteoconductivity 🦴🧬, alginate biocomposites for drug delivery 🦠, and silk fibroin scaffolds for tissue engineering 🧵🏗️. This multidisciplinary focus aims to enhance healthcare, sustainability, and innovation, positioning her as a leader in pharmaceutical research. 🌟📘

Publication Top Notes📄✨

Flavonoids and their metabolites: Impact on gut microbiota in connection with chronic metabolic diseases

Phenolics as Shielding Counterparts from Plants to Combat Biotic Stress Mediated by Microbes and Nematodes

Enzymology in drug discovery

Sustainable Practices in the Pharmaceutical Industry: Development and Adoption

Applications of Modified Plant Protein-Based Future Foods

Nanoparticles for triggering gene expression and osteoconductivity

Biocomposites of Alginates in Drug Delivery

Silk Fibroin–Based Biomaterial Scaffold in Tissue Engineering: Present Persuasive Perspective

Conclusion

Prof. Sailee Chowdhury demonstrates a holistic profile of academic excellence, significant research contributions, and impactful teaching and leadership roles. These attributes strongly position her as a suitable nominee for the Best Researcher Award. Her focus on innovative and sustainable pharmaceutical practices adds further value to her candidacy.

Vinutha Moses | Biomaterials | Biomaterials Excellence

Vinutha Moses | Biomaterials | Biomaterials Excellence

Dr Vinutha Moses, RV College of Engineering, India

Dr. Vinutha Moses is a dedicated researcher and educator in biomaterials and chemical engineering, with extensive experience as an Assistant Professor at R.V. College of Engineering and Sapthagiri College of Engineering. Her work focuses on sustainable materials, innovative biomaterials, and eco-friendly solutions. Key publications include studies on bio-resins from organic waste, nanotechnology in water treatment, and high-strength cellulose resins for wood composites. Actively engaged in conferences and workshops, she continually enhances her expertise in AI, sustainable technologies, and biomaterial applications. Her strong academic background and commitment to sustainable innovation make her a valuable contributor to biomaterials research. 🌱🔬📚

Publication Profile

GoogleScholar

Orcid

Educational Background 🎓

Dr. Vinutha Moses holds an MSc(Res) and is pursuing a Ph.D. in Chemical Engineering from RV College of Engineering, Bangalore, Karnataka, India. Her advanced studies emphasize the development of sustainable and innovative materials, highlighting her expertise in chemical processes and biomaterials. Her academic background is grounded in rigorous research and applications that bridge chemical engineering with environmental sustainability. This educational foundation supports her ongoing contributions to the field, aligning with her broader interests in eco-friendly solutions and innovative research. Dr. Moses’ qualifications reflect her commitment to academic excellence and impactful research. 🎓🔬🌱

Current Role and Focus 💼

Dr. Vinutha Moses has extensive teaching experience in chemical engineering, having worked as an Assistant Professor at R.V. College of Engineering since 2016 and Sapthagiri College of Engineering from 2012 to 2016. She has also served as a Lecturer in various institutions, including R.V. College of Engineering (2007), Nijaiingappa Educational Centre (2002-2003), and Good Wills Polytechnical College (2001-2002). In addition to her academic roles, she has coordinated technical and non-technical events, showcasing her leadership and organizational skills. Dr. Moses’ diverse teaching career reflects her dedication to education and research in chemical engineering. 👩‍🏫🔬📚

Research Focus Area 🌱🧬

Dr. Vinutha Moses’ research primarily focuses on biomaterials, sustainable materials, and environmental applications of chemical engineering. Her work includes the development of bio-resins from organic waste for high-strength composites, wastewater treatment using nanotechnology and microbial fuel cells, and exploring eco-friendly solutions like bio-based polymers and biofuels. She has also researched advanced applications in oil recovery, including microbial enhancement and biosurfactants. With a strong background in nanotechnology, her work spans the intersections of sustainability, chemical engineering, and innovative biomaterials for environmental impact. 🌱🔬💡

Participation at National/International Conference 🎓🌍

Dr. Vinutha Moses has actively contributed to various international conferences, showcasing her expertise in sustainable engineering and technology. She presented on “Integrated Waste Management Systems” at the International Conference on Sustainable Environment and Engineering (ICSEE’19) in 2019. Additionally, her work on “Nanotechnology as Antibacterial and Heavy Metal Removal in Wastewater Treatment” was featured at the International Conference on Sustainable Engineering and Technology (iConset 2018). Her contributions also include the development of bio-resins from organic waste for high-strength composites and research on electroless gold plating bath. Dr. Moses’ research continues to impact both environmental and material sciences. 🌍🔬♻️

Publication Top Notes📄✨

Microbial hydraulic acid fracturing

Economical synthesis of oxygen to combat the COVID-19 pandemic

Hydroxymethyl furfural (HMF) a high strength cellulose resin for wood composite laminates

Development of a bio-resin from organic waste and its application to make high strength composites

Biological synthesis of copper nanoparticles and its impact

Phytochemical profile, antibacterial and antidiabetic effects of crude aqueous leaf extract of Datura stramonium

Production of biofuel from micro algae (Chlorella pyrenoidosa) using vertical reactor system and effect of nitrogen on growth and lipid content

Use of Keratin Present in Chicken Feather as a Hydrogen Storage Material: A Review

Wastewater Treatment Using Anaerobic Fluidized Bed Membrane Bioreactor Coupled with Microbial Fuel Cells for Circular Economy

Conclusion 🔍

Dr. Vinutha Moses’ combination of academic roles, publication record, conference participation, and continuous professional development makes her well-suited for contributing to Research for Biomaterials Excellence. Her deep understanding of chemical engineering principles, applied research in sustainable materials, and active engagement in educational and research initiatives position her as a strong candidate for leading and collaborating on innovative biomaterials projects.