Dr Huaming Li | Materials Science | Best Researcher Award

Dr Huaming Li | Materials Science | Best Researcher Award

Dr. Huaming Li is an Associate Professor at the College of Physics and Optoelectronics, Taiyuan University of Technology, China. He earned his Ph.D. in Physics from the Georgia Institute of Technology, USA, and has held academic positions at Taiyuan University since 2012. His research focuses on high-pressure thermodynamic behavior of liquid metals and solid solutions. Known for his discovery of linear isothermal regularities and his development of predictive equations of state, Dr. Li integrates fundamental physics with advanced materials science. His scholarly work bridges experimental insight and theoretical modeling in condensed matter and thermal physics.

Dr Huaming Li, Taiyuan University of Technology, China

Profile

SCOPUS

ORCID

πŸŽ“ Education

Dr. Huaming Li has a strong academic foundation in physics, beginning with his B.S. (1995–1999) and M.S. (1999–2002) in Theoretical Physics from Lanzhou University, China πŸ‡¨πŸ‡³. He then earned his Ph.D. in Physics (2002–2009) from the prestigious Georgia Institute of Technology, USA πŸ‡ΊπŸ‡Έ. His doctoral studies focused on thermodynamic behavior and phase transitions in materials, laying the groundwork for his future in high-pressure physics and condensed matter research. This educational journey equipped him with advanced skills in statistical mechanics, computational physics, and materials theory πŸ“πŸ§ πŸ”¬β€”essential tools for his innovative work in materials science.

πŸ‘¨β€πŸ« Experience

Dr. Huaming Li has rich academic and research experience spanning over a decade in the field of condensed matter and thermodynamic physics πŸ§ͺ. After earning his Ph.D. from Georgia Tech, he completed a postdoctoral fellowship there, focusing on liquid metals under extreme conditions πŸŒ‘οΈπŸ”¬. Currently an Associate Professor at Taiyuan University of Technology, he leads studies on equations of state, entropy, and free volume evolution in high-pressure environments πŸ”πŸ“Š. Dr. Li regularly presents at global conferences like APS, CCMR, and CPS πŸŒπŸ“’, contributing cutting-edge insights to energy materials, thermal modeling, and phase transition science πŸ”§βš™οΈ.

🎀 Conference Presentation

Dr. Huaming Li has presented extensively on the thermodynamic behavior of liquid metals under high pressure at prestigious international conferences πŸ§ͺ🌍. His talks explore linear isotherm regularities, equations of state, and entropy and free volume evolution in metals such as sodium, potassium, indium, and iron under extreme conditions πŸ”¬πŸŒ‘οΈ. He has delivered findings at the APS March Meetings (USA), CCMR (South Korea), and CPS (China), showcasing his leadership in high-pressure materials research πŸ§ πŸ“Š. His work aids in the predictive modeling of metallic liquids, contributing to energy materials design and the understanding of phase transitions βš™οΈπŸ§―πŸ“ˆ.

βš™οΈ Research ExcellenceΒ 

Dr. Huaming Li has made groundbreaking contributions in the field of high-pressure thermodynamics by discovering linear isotherm regularities in liquid metals such as sodium, potassium, gallium, bismuth, and mercury πŸ§ͺ🧊. His work enables predictive modeling of thermodynamic properties, supporting advanced material design. He also developed theoretical frameworks for polymorphic melting and amorphization in binary solid solutions πŸ”„πŸ”¬. His investigations into anomalous heat capacity behaviors of liquid metals bridge fundamental science and practical engineering applications πŸ“˜πŸ”§. Published in top journals like AIP Advances and Physica B, his research is widely recognized and presented at international conferences πŸŒπŸ“Š.

πŸ”¬ Research Focus

Dr. Huaming Li’s research centers on the thermodynamics of liquid metals under high pressure βš™οΈπŸŒ‘οΈ, focusing on developing equations of state that describe linear isotherm behaviors in elements such as sodium, potassium, bismuth, and mercury πŸ§ͺπŸ”©. He investigates free volume evolution and entropy contributions in condensed matter, especially in glass-forming liquids and metallic alloys πŸ§ŠπŸ“ˆ. His work explores the structure-property relationships critical to predicting material behavior under extreme conditions, contributing to advancements in energy materials, solid-state physics, and high-performance alloys πŸš€πŸ”¬. This research bridges theoretical physics with practical materials engineering πŸŒπŸ› οΈ.

πŸ“š Publications

On Heat Capacity of Liquid Mercury Under Pressure
Authors: Huaming Li, Chaochao Bao, Xiaojuan Wang, Yanting Tian, Lin Feng, Ying Zhang, Yongli Sun, Mo Li
Journal: Physica B: Condensed Matter, 2025

Thermodynamic Properties of Liquid Bismuth Under Pressure: New Regularities and an Equation of State
Authors: Huaming Li, Lin Feng, Ying Zhang, Yanting Tian, Yongli Sun, Mo Li
Journal: AIP Advances, 2022

Linear Isotherm Regularities of Liquid Gallium Under Pressure
Authors: Huaming Li, Hao Ding, Yanting Tian, Yongli Sun, Mo Li
Journal: AIP Advances, 2021

Linear Isotherm Regularities of Solid Sodium Under Pressure
Authors: Huaming Li, Hao Ding, Yanting Tian, Yongli Sun, Shiwei Fang
Journal: AIP Advances, 2020

Regularities of Liquid Potassium at Different Temperatures
Authors: Huaming Li, Hao Ding, Yanting Tian, Yong Li Sun, Mo Li
Journal: AIP Advances, 2019

Nonlinearity Acoustic Parameters from Equation of State of Liquid Sodium Under Pressure
Authors: Huaming Li, Xiaoxiao Zhang, Yongli Sun, Mo Li
Journal: AIP Advances, 2017

Thermodynamic Properties of Liquid Sodium Under High Pressure
Authors: Huaming Li, Xiaoxiao Zhang, Yongli Sun, Mo Li
Journal: AIP Advances, 2017

Assist. Prof. Dr Tikaram Neupane | Materials Science | Best Researcher Award

Assist. Prof. Dr Tikaram Neupane | Materials Science | Best Researcher Award

Assist. Prof. Dr. Tikaram Neupane is a physicist specializing in nonlinear optics and nanomaterials, focusing on tungsten and molybdenum disulfide atomic layers. πŸ”¬βœ¨ He holds a Ph.D. in Condensed Matter and Optical Physics and has secured research grants from NASA, DoD, and academic institutions. πŸ’ΌπŸ“š Dr. Neupane excels in advanced laser techniques, spectroscopy, microscopy, and computational modeling (DFT). πŸ’»πŸ”­ He actively leads scientific fairs, organizes conferences, and serves on editorial boards. πŸ†πŸ“Š With numerous publications and awards, including a UNESCO fellowship, he combines research excellence with strong community engagement and mentorship. πŸŒŸπŸ‘¨β€πŸ«

Assist. Prof. Dr Tikaram Neupane, University of North Carolina at Pembroke, United States

Profile

SCOPUS

ORCID

GOOGLESCHOLAR

Education πŸŽ“

Dr. Tikaram Neupane earned his Ph.D. in Condensed Matter and Optical Physics from Hampton University (2016–2020), focusing on third-order optical nonlinearity of tungsten and molybdenum disulfide atomic layers. πŸŽ“πŸ”¬ Prior to that, he completed an MS in Condensed Matter Physics at the University of Wyoming (2014–2015), deepening his expertise in advanced physics topics. πŸ“šβš›οΈ He also holds a Postgraduate Diploma in Earth System Physics from the International Center for Theoretical Physics, Trieste, Italy (2010–2011), where he worked on 2D modeling of mantle convection, exploring viscosity effects and multi-scale processes. πŸŒπŸŒ€

Experience

Dr. Tikaram Neupane completed his Ph.D. at Hampton University (2016–2020), studying nonlinear absorption/refraction, quantum dots, and all-optical switching in nanomaterials. πŸ”¬βœ¨ During his graduate work at the University of Wyoming, he assisted in solar cell efficiency characterization and perovskite optical simulations. β˜€οΈπŸ’» Since 2021, he has been Assistant Professor of Physics at UNC Pembroke, coordinating Applied Physics and recruiting students through regional science fairs. πŸŽ“πŸ“š He was a Postdoctoral Research Associate at the University of Southern Mississippi (2020–2021), focusing on ocean optics, color, and remote sensing with NASA’s Stennis Space Center. πŸŒŠπŸš€

Grants and Awards πŸ…

Assist. Prof. Dr. Tikaram Neupane is an award-winning physicist specializing in nonlinear optics and nanomaterials. πŸ…πŸ”¬ He secured prestigious research grants including the Dean’s Research Fund (2021), NC Collaboratory HMSI Award (2022), and PURC Center funding (2023–2025). πŸ’ΌπŸ“Š His honors include the Best Presentation Award at ICNST 2019, NASA & DoD-funded research assistantships (2016–2020), and a UNESCO Fellowship at ICTP, Italy (2010–2011). πŸŒπŸŽ“ Supported early by Tribhuvan University free-ship (2006–2008), he also held a Graduate Assistantship at the University of Wyoming (2014–2015). His work reflects sustained excellence in physics research and innovation. βœ¨πŸ”­

Book Chapter πŸ“–

Assist. Prof. Dr. Tikaram Neupane is a co-author of the 2024 book chapter in β€œAdvanced Graphene and Graphene Oxide Materials,” published by MDPI. πŸ“–πŸ§‘β€πŸ”¬ His expertise lies in condensed matter physics and nonlinear optics of nanomaterials like tungsten and molybdenum disulfide. βš›οΈβœ¨ Dr. Neupane combines advanced laser techniques, spectroscopy, and computational modeling to explore cutting-edge material properties. πŸ’‘πŸ”¬ His scholarly contributions extend beyond research articles to impactful academic publishing, reflecting his leadership in nanomaterials science. πŸŒπŸ“š He is dedicated to advancing knowledge in 2D materials and their innovative applications. πŸš€πŸ”—

Technical Skills πŸ–₯️

Expert in advanced laser systems including pico- and nano-second lasers (Shunami, Spectra-Physics, Continuum) and CW lasers (Diode, Ar, He-Ne, He-Cd). βš‘πŸ”† Skilled in nonlinear optics techniques like Z-scan, I-scan, spatial self-phase modulation, and four-wave mixing. πŸŒ€βœ¨ Proficient in Density Functional Theory (DFT) for electronic and optical property calculations of nanomaterials. πŸ’»πŸ“Š Experienced in spectroscopy (Raman, UV-Vis, photoluminescence) and microscopy (optical, XRD, AFM, TEM). πŸ”πŸ“ˆ Adept with data acquisition tools and optics instrumentation. Software skills include MATLAB, Origin, VASP, and Quantum Espresso. πŸ’ΎπŸ–₯️

Research Focus πŸ”

Dr. Tikaram Neupane’s research focuses on nonlinear optical properties of 2D nanomaterials such as graphene oxide, CdSe quantum dots, and hexagonal boron nitride. πŸ“ˆπŸ§ͺ His work explores third-order nonlinearity, self-phase modulation, and spin-resolved optical behavior using cutting-edge techniques like Z-scan and DFT simulations. πŸ”πŸ’‘ He investigates quantum optical effects for photonics and optoelectronics, pushing frontiers in nanophotonics, quantum materials, and ultrafast spectroscopy. βš›οΈπŸ“‘ Dr. Neupane’s contributions offer critical insights into the development of next-gen devices for optical communication, sensing, and quantum information technologies. πŸš€πŸ“±πŸŒ

Publications πŸ“š

Size-dependent fluorescence properties of CdSe quantum dots
πŸ‘₯ Authors: Uma Poudyal, Chandra Mani Adhikari, Nisha H. Makani, Bhoj Raj Gautam, Tikaram Neupane
πŸ“˜ Journal: Solid State Communications (2025)

Third-Order Optical Nonlinearity of Hexagonal Boron Nitride Atomic Layer
πŸ‘₯ Authors: Tikaram Neupane, Uma Poudyal, Bagher Tabibi, Felix Jaetae Seo
πŸ“˜ Preprint: Preprints.org (2024)

Cubic Nonlinearity of Graphene-Oxide Monolayer
πŸ‘₯ Authors: Tikaram Neupane, Uma Poudyal, Bagher Tabibi, Wan-Joong Kim, Felix Jaetae Seo
πŸ“˜ Journal: Materials (2023)

Dispersion in Single-Wall Carbon Nanotube Film: An Application of Bogoliubov–Valatin Transformation for Hamiltonian Diagonalization
πŸ‘₯ Authors: Chandra M. Adhikari, Da’Shawn M. Morris, Thomas W. Noonan, Tikaram Neupane, Basu R. Lamichhane, Bhoj R. Gautam
πŸ“˜ Journal: Condensed Matter (2023)

Spatial Self-Phase Modulation in Graphene-Oxide Monolayer
πŸ‘₯ Authors: Tikaram Neupane, Bagher Tabibi, Wan-Joong Kim, Felix Jaetae Seo
πŸ“˜ Journal: Crystals (2023)

Spin-Resolved Visible Optical Spectra and Electronic Characteristics of Defect-Mediated Hexagonal Boron Nitride Monolayer
πŸ‘₯ Authors: Sheng Yu, Tikaram Neupane, Bagher Tabibi, Qiliang Li, Felix Seo
πŸ“˜ Journal: Crystals (2022)

Mr Zhaoheng Ling | Materials Science | Best Researcher Award

Mr Zhaoheng Ling | Materials Science | Best Researcher Award

Mr Zhaoheng Ling, King Abdullah University of Science and Technology, Saudi Arabia

Mr. Zhaoheng Ling, a Ph.D. candidate at King Abdullah University of Science and Technology, specializes in nanomaterials and solar cell technologies. His research has advanced organic photovoltaics (OPVs) through bulk heterojunction modification, interface engineering, and molecular doping, achieving breakthroughs like 20.5% efficiency in OPVs. With publications in high-impact journals such as ACS Energy Letters and Advanced Materials, Mr. Ling has made significant strides in sustainable energy solutions. He actively engages in global conferences and workshops, showcasing his expertise in molecular doping, crystal growth, and materials characterization. His work is shaping the future of renewable energy. πŸ§ͺβ˜€οΈπŸ“š

Publication Profile

GOOGLE SCHOLAR

ORCID

SCOPUS

Educational Qualifications πŸŽ“

Mr. Zhaoheng Ling is pursuing a Ph.D. in Material Science and Engineering at King Abdullah University of Science and Technology (2021–present), achieving a GPA of 3.75/4. His research focuses on advanced nanomaterials and renewable energy solutions. He earned his M.S. in Materials Science from the University of Science and Technology of China (2014–2017), where he specialized in nanoscience and graduated with a GPA of 80.5/100. Mr. Ling holds a B.S. in Materials Science from HeFei University (2009–2013), graduating with a GPA of 79.5/100. His strong academic background underpins his innovative contributions to materials science. πŸŽ“πŸ”¬πŸŒ

Experience and Contributions πŸ’Ό

Mr. Zhaoheng Ling possesses extensive expertise in molecular doping of organic semiconductors for photovoltaic applications, enhancing solar cell efficiency and stability. He is skilled in advanced experimental techniques such as J-V measurement, external quantum efficiency (EQE), UV-Vis transmission, photoluminescence, SEM, AFM, XRD, and atom probe tomography. His proficiency extends to crystal growth and thin-film deposition using molecular-beam epitaxy (MBE), thermal evaporation, and e-beam evaporation. Additionally, he is adept at data modeling and analysis with tools like Microsoft Office and ORIGIN. His teaching experience includes courses on the Physics of Beam-Solid Interactions and Organic Semiconductors and Applications at GEC Academy. πŸ§ͺπŸ”¬πŸ“Š

Conference and Workshop

Mr. Zhaoheng Ling actively participates in international conferences and workshops to share his research and advance the field of photovoltaics. He delivered an oral presentation at the Asia-Pacific International Conference on Perovskite, Organic Photovoltaics, and Optoelectronics (2024, Japan) and presented posters at the Perovskite and Organic Photovoltaics Conference (2024, China) and the International Conference on Hybrid and Organic Photovoltaics (2023, UK). He has also attended notable workshops, including Printable Thin-Film Photovoltaics & Applications (2024, Germany), Photovoltaic Innovation for Saudi Vision 2030 (2024, KAUST), and Sustainable Energy Materials for a Low Carbon Future (2023, KAUST). πŸŒπŸ”¬πŸ“Š.

Research Focus Area 🌱🧬

Mr. Zhaoheng Ling’s research primarily centers on organic photovoltaics (OPVs), perovskite solar cells, and nanomaterials for renewable energy applications. His work involves enhancing solar cell efficiency through innovative approaches like bulk heterojunction modification, molecular doping, and interlayer engineering. Notable achievements include achieving over 20% efficiency in OPVs and developing tandem photovoltaic systems with 23.6% efficiency. His studies explore the stability, passivation, and optoelectronic properties of materials, addressing critical challenges in sustainable energy technologies. With high-impact publications in journals like ACS Energy Letters and Advanced Materials, his contributions are shaping the future of clean energy. πŸ§ͺβ˜€οΈπŸ“š

Awards πŸ†

Mr. Zhaoheng Ling was honored with the prestigious Academic Scholarship from the Nano Science and Technology Institute at the University of Science and Technology of China during 2014–2015. This recognition highlights his academic excellence and dedication to advancing the field of nanoscience. The award underscores his ability to excel in rigorous scientific research and his commitment to contributing innovative solutions to materials science and nanotechnology. This achievement reflects Mr. Ling’s determination to push the boundaries of scientific knowledge. πŸŽ“πŸ†πŸ”¬

Publication Top NotesπŸ“„βœ¨

High-efficiency silicon/organic heterojunction solar cells with improved junction quality and interface passivation

On the Conformation of Dimeric Acceptors and Their Polymer Solar Cells with Efficiency over 18%

Excellent passivation of silicon surfaces by thin films of electron-beam-processed titanium dioxide

Over 19% efficiency in ternary organic solar cells enabled by n-type dopants

Optoelectronic evaluation and loss analysis of PEDOT: PSS/Si hybrid heterojunction solar cells

TiO2Β Films from the Low‐Temperature Oxidation of Ti as Passivating‐Contact Layers for Si Heterojunction Solar Cells

Monolithic Perovskite–Perovskite–Organic Triple-Junction Solar Cells with a Voltage Output Exceeding 3 V

Stability and passivation of 2D group VA elemental materials: black phosphorus and beyond

 

 

Tianyu Ma | Metals and Alloys | Best Researcher Award

Tianyu Ma | Metals and Alloys | Best Researcher Award

Dr Tianyu Ma, Xi’an Jiaotong University, China

Dr. Tianyu Ma is a renowned researcher in materials science, specializing in high-performance materials for aerospace applications. He holds a Ph.D. from Beijing University of Aeronautics and Astronautics and has postdoctoral experience at the National Institute for Materials Science (Japan) and Zhejiang University. Currently a professor at Xi’an Jiaotong University, his research focuses on materials for bearings and high-entropy alloys. With multiple publications in top journals like Nature and Advanced Materials, Dr. Ma’s work impacts aerospace, automotive, and energy industries, focusing on enhancing material performance in extreme environments. βœˆοΈπŸ”¬

Publication Profile

Scopus

Orcid

Educational Background πŸŽ“

Dr. Tianyu Ma holds a Ph.D. in Materials Science and Engineering from Beijing University of Aeronautics and Astronautics, where he also completed his Bachelor’s degree. His research focuses on multi-scale analysis of materials for high-performance bearings, specifically in aeroengines. These bearings endure extreme conditions like high temperatures, high speeds, and depleted oil, making them prone to failure. Dr. Ma investigates the damage mechanisms of bearing materials across macro to micro scales, aiming to understand and improve the evolution of bearing failure. His work plays a critical role in enhancing the durability and performance of aerospace components. βœˆοΈπŸ”¬

Current Role and Focus πŸ’Ό

Dr. Tianyu Ma is currently a Professor at Xi’an Jiaotong University’s Frontier Institute of Science and Technology, a position he has held since November 2017. Prior to this, he served as a Postdoctoral Researcher and Associate Professor at Zhejiang University’s Department of Materials Science and Engineering from 2006 to 2017. Additionally, Dr. Ma worked as a JSPS Foreign Postdoctor at the National Institute for Materials Science in Japan from 2011 to 2013, contributing to research in ferroic physics. His extensive academic career spans institutions in China and Japan, focusing on advanced materials for aerospace and engineering applications. πŸŽ“πŸŒ

Research Focus Area 🌱🧬

Dr. Tianyu Ma’s research primarily focuses on advanced materials for high-performance applications, particularly in aerospace and magnetic materials. His work involves multi-scale analysis of materials, such as 8Cr4Mo4V alloy, and exploring damage mechanisms through molecular dynamics simulations. He has also contributed significantly to the development of high-entropy alloys, magnetic materials, and alloys with enhanced mechanical properties like strength, ductility, and thermal expansion. His publications in Nature, Acta Materialia, and Advanced Materials reflect his deep engagement with materials science, especially in the areas of ultrahigh-strength alloys, magnetic performance, and thermally stable materials for extreme conditions. πŸ› οΈβœˆοΈπŸ§²

Publication Top NotesπŸ“„βœ¨

Enhanced magnetic performance of Fe-rich Sm2Co17-type magnets by optimizing Zr content

Rapid-thermal-process pre-treatment promoted precipitation towards strengthening hard magnetism of Sm2Co17-type magnets

Large Non‐Hysteretic Volume Magnetostriction in a Strong and Ductile High‐Entropy Alloy

Local Displacive Phase Transformation in Large-Magnetostriction Alloy Fe81Ga19

Formation of semi-coherent Zr-rich lamellar phase in 2:17-type Sm-Co-Fe-Cu-Zr magnets with high Fe content

Atomic scale understanding the periodic modulation in ferroelastic alloy Ni-Mn-Ti

Toughening Ceramics down to Cryogenic Temperatures by Reentrant Strain-Glass Transition

Origin of hard magnetism in Fe-Co-Ni-Al-Ti-Cu high-entropy alloy: Chemical shape anisotropy

Conclusion πŸ”

Dr. Tianyu Ma’s extensive academic background, innovative research, and prolific publication record make him a strong candidate for the Best Researcher Award. His work bridges fundamental material science with applied engineering, particularly in the area of multi-scale materials analysis, which is essential for improving high-performance bearings and magnets. His ongoing contributions to the development of advanced materials for challenging environments align well with the goals of this award.