Prof Janusz Majta | Microstructure and Properties | Best Researcher Award

Prof Janusz Majta | Microstructure and Properties | Best Researcher Award

Prof. Janusz Majta is a Full Professor at the AGH University of Krakow, Poland, specializing in materials science and metal forming. He earned his PhD, with a focus on microstructure evolution and plastic deformation under dynamic conditions. He has conducted postdoctoral research at the University of Waterloo, Canada, and collaborated extensively with Los Alamos National Laboratory in the U.S. His research interests include multiscale modeling, severe plastic deformation (SPD), ultrafine-grained materials, and metal-to-metal composites. Prof. Majta has authored over 230 publications, supervised 9 PhD candidates, and led several international projects funded by DOE, DOD, NSERC, and the European Commission. He is an active member of global scientific societies and has played a key role in organizing the Metal Forming International Conference series.

Prof Janusz Majta, AGH University of Krakow, Poland

Profile

ORCID

🎓 Education

Prof. Janusz Majta holds a strong academic foundation in metallurgical and materials science. He earned his BSc in Metallurgical Engineering, followed by an MSc in Metal Forming in 1980 from the University of Mining and Metallurgy in Krakow, Poland. He obtained his PhD in Metallurgical and Materials Science from the same university . He completed his DSc in Materials Science, and in September, he was awarded the title of Full Professor.

💼 Experience

Prof. Majta is currently a Full Professor at the AGH University of Science and Technology in Kraków, Poland. His academic journey at AGH began as a Lecturer, progressively rising through the ranks to Assistant Professor, Associate Professor, and then Full Professor . Internationally, he served as a Postdoctoral Fellow at the University of Waterloo in Canada and worked multiple times as a visiting researcher and consultant at the Los Alamos National Laboratory in the United State. He also acts as an Expert for the European Commission Research Department .

🛠️ Contributions

Prof. Janusz Majta has made significant and sustained contributions to the field of materials science and engineering, particularly in the areas of metal forming, plastic deformation, and multiscale modeling. He has authored over 230 scientific publications in prestigious journals and conference proceedings, along with 4 monographs and 10 edited volumes of international conference materials. His research has advanced the understanding of microstructure evolution under dynamic and thermomechanical loading, leading to improved design strategies for high-performance structural materials. Prof. Majta’s pioneering work on the behavior of multiphase materials under severe plastic deformation and his development of computational models for metal forming processes have had both theoretical and practical impact. Internationally recognized, he has delivered numerous invited talks and contributed presentations at conferences worldwide. As a leader and mentor, he has supervised nine PhD candidates and actively participated in major international research collaborations supported by organizations such as the DOE, DOD, NSERC, the European Commission (PHARE, RFCS), and the Marie Skłodowska-Curie Foundation. Through his engagement with scientific committees, editorial duties, and long-standing role in organizing the Metal Forming International Conference, Prof. Majta has played a pivotal role in shaping research directions and promoting scientific exchange in the field.

📡 Research Projects 

Prof. Janusz Majta has led and participated in numerous national and international research projects aimed at advancing materials engineering and metal forming technologies. His work has received support from prominent funding agencies and organizations, including the U.S. Department of Energy (DOE), the Department of Defense (DOD), the Natural Sciences and Engineering Research Council of Canada (NSERC), the European Commission through PHARE and RFCS programs, and the prestigious Marie Skłodowska-Curie Foundation. These projects have addressed critical challenges in modeling and predicting the behavior of multiphase and ultrafine-grained materials under complex loading conditions. His research has contributed to the development of physically-based simulation tools for microstructure evolution, thermomechanical processing, and severe plastic deformation techniques. Notably, his collaborations with the Los Alamos National Laboratory in the United States focused on improving the dynamic performance and structural stability of advanced alloys and composites. Through these interdisciplinary and multinational research efforts, Prof. Majta has significantly influenced both academic and industrial practices in the design and processing of advanced materials.

🔬 Research Focus

Prof. Majta’s research centers on multiscale modeling of microstructure and mechanical behavior in multi-phase and ultrafine-grained materials. He specializes in mathematical and computational modeling of metal forming processes, microstructure evolution, and plastic deformation under dynamic loading. His work emphasizes physically-based design of structural materials with superior properties, including SPD (Severe Plastic Deformation) processes, nanostructured and multilayered materials, and composites reinforced with dispersed particles. His contributions bridge fundamental theory with applied research in both manufacturing and advanced material development.

📘 Publications

📄 Modeling of Microstructure Evolution in Multiphase Steels under Dynamic Loading
👨‍🔬 Author: Janusz Majta
📘 Journal: Journal of Materials Processing Technology

📄 Multiscale Simulation of Severe Plastic Deformation in Ultrafine-Grained Alloys
👨‍🔬 Author: Janusz Majta
📘 Journal: Materials Science and Engineering A

📄 Computational Modeling of Thermomechanical Metal Forming Processes
👨‍🔬 Author: Janusz Majta
📘 Journal: International Journal of Mechanical Sciences

📄 Shear Band Instabilities in Polycrystalline Structures
👨‍🔬 Author: Janusz Majta
📘 Journal: Acta Materialia

📄 Physically Based Design of Metal-to-Metal Composites
👨‍🔬 Author: Janusz Majta
📘 Journal: Materials & Design

Dr Chenghao Song | Microstructure and Properties | Best Researcher Award

Dr Chenghao Song | Microstructure and Properties | Best Researcher Award

Dr. Chenghao Song is a materials scientist and lecturer at Dongguan University of Technology 🇨🇳. He holds B.S., M.S., and Ph.D. degrees in Materials Science and Engineering from the prestigious University of Science and Technology Beijing (USTB) 🎓. His postdoctoral work at Xi’an Jiaotong University deepened his expertise in advanced high-strength steels, phase transformations, and fatigue behavior ⚙️🧱. His cutting-edge research uses tools like 3D-APT, neutron diffraction, and HEXRD to design next-gen structural materials 🚗🏭. With 13+ SCI papers and several patents, he is shaping the future of durable, sustainable alloys for industry 🌍🛠️.

Dr Chenghao Song, Dongguan University of Technology, China

Profile

SCOPUS

ORCID

GOOGLESCHOLAR

🎓 Education 

Dr. Chenghao Song has a strong academic foundation in materials science and engineering 🧪🔬. He earned his B.S. (2009–2013) from the School of Advanced Engineering, USTB 🎓 with honors under the Excellent Engineers Education Training Plan ⭐. He continued at USTB for his M.S. (2013–2015) and Ph.D. (2015–2019) under Prof. Hao Yu, focusing on advanced alloys and microstructural evolution 🏗️📊. Following his doctorate, he completed a postdoctoral fellowship (2019–2020) at Xi’an Jiaotong University 🏫 in mechanical engineering. Since 2020, he has been a Lecturer at Dongguan University of Technology, integrating research and education 📚🧠.

🏫 Experience 

Dr. Chenghao Song currently serves as a Lecturer at the School of Mechanical Engineering, Dongguan University of Technology 🏛️, where he contributes to cutting-edge research and teaching in materials science and engineering 🧪📘. Previously, he completed postdoctoral research at Xi’an Jiaotong University 🔬, focusing on mechanical behavior and microstructural analysis of steels. His academic journey has equipped him with deep expertise in phase transformation, fatigue analysis, and thermo-mechanical modeling ⚙️📈. Located at Songshan Lake in Guangdong, his lab integrates simulation and experimentation to advance smart, high-performance materials for automotive and structural applications 🚗🏗️.

🏆 Awards & Honors

Dr. Chenghao Song has received prestigious academic honors for his outstanding achievements in materials science. He was awarded the Excellent Master’s Thesis Award by the University of Science and Technology Beijing 🧠📘, recognizing the quality and innovation of his early research. Additionally, he earned the National Scholarship for Ph.D. students 🥇🎓, one of China’s most competitive and distinguished academic honors, given to top-performing doctoral researchers. These accolades reflect his dedication, academic excellence, and contributions to advanced materials research at both national and institutional levels 🧪🏅.

🛠️ Contributions

Dr. Chenghao Song has actively contributed to multiple high-impact research projects in advanced steels and alloy materials 🔩🧱. His ongoing work with NSFC explores the effect of silicon on dislocation behavior in martensite using neutron diffraction for automotive steels 🚗⚙️. He has also studied interface mass transfer and deformation coordination in stainless steel composites 🔄🧊. Leveraging big data, he helped design lightweight, bone-like structured steels for superior performance 📊🧬. Additionally, he worked on the development of cobalt-chromium alloys for jewelry applications 💍⚒️. These diverse projects reflect his innovation across both industrial and scientific domains.

🔬 Research Focus 

Dr. Chenghao Song’s research centers on phase transformations, materials design, and the correlation between microstructure and mechanical properties of engineering alloys ⚙️🧱. Using thermodynamic and kinetic modeling, he develops next-generation steels with tailored performance 🧮🧬. Trained under Prof. Hao Yu, he has expertise in advanced characterization techniques including SEM, EBSD, TEM, FIB, 3D-APT, and HEXRD 🔍🧊. His goal is to decode the “metal genome” 🧬🧠—unraveling microstructural secrets to accelerate material innovation. By linking atomic-scale features to macro-performance, his work contributes to designing stronger, lighter, and more sustainable materials for critical applications 🚗🏗️.

📚 Publications

Effect of Si on the dislocation state within martensite of ultra-high strength hot-rolled medium Mn steel with good ductility
Authors: Chenghao Song, Zhenshan Zhang, Wenyuan Wu, Haoliang Wang, Zhenzhong Sun, Yuhui Yang, Weifeng He, Juping Xu, Yuanguang Xia, Wen Yin et al.
Journal: Materials Science and Engineering: A (2023)

The Grey-Taguchi method analysis for processing parameters optimization and experimental assessment of 42CrMo steel treated by ultrasonic surface rolling
Authors: Yuhui Yang, Xin Wei, Zhili Long, Chenghao Song, Chunxiao Xie, Jiajie Lin
Journal: Journal of Materials Research and Technology (2023)

Developing NiAl-strengthened HSLA steels by controlling nanoscale precipitation and high-angle boundaries
Authors: Xiangyun Zhang, Jialong Wang, Shiyun Liu, Ling Yan, Chenghao Song, Hao Yu
Journal: Materials Science and Engineering: A (2022)

Optimization of Selective Laser Melting Process Parameters Via Taguchi’s Methods and Gray Relational Analysis for 3D Printing of 18Ni‐300 Maraging Steel
Authors: Wee King Law, Ziyang Wu, Chenghao Song, Haoliang Wang, Kok-Cheong Wong, Chin Seong Lim, Zhenzhong Sun
Journal: Steel Research International (2022)

A new hot-rolled lightweight steel with ultra-high strength and good ductility designed by dislocation character and transformation strain
Author: Chenghao Song
Journal: Scripta Materialia (2022)

Nano-precipitation leading to linear zero thermal expansion over a wide temperature range in Ti22Nb
Authors: Wang H., Lai D.K.Z., Xu J., Yin W., Song C., Zhao Y., Yang Y., Bönisch M., Sun Z.
Journal: Scripta Materialia (2021)

Mechanical Behaviors of Microalloyed TRIP-Assisted Annealed Martensitic Steels under Hydrogen Charging
Authors: Xiongfei Yang, Hao Yu, Chenghao Song, Lili Li
Journal: Materials (2021)

Dr jinlan An | Microstructure and Properties | Best Researcher Award

Dr jinlan An | Microstructure and Properties | Best Researcher Award

🔧 Dr. Jinlan An is a Lecturer at the Key Laboratory of Fundamental Science for National Defense of Aeronautical Digital Manufacturing Process, Shenyang Aerospace University ✈️. Her research focuses on advanced materials engineering, particularly the laser deposition repair of GH4169 alloy and its microstructural evolution under electric pulsed current ⚡🧪. By studying phase transformations such as the dissolution of Laves phase and precipitation of γ″ phase, she aims to enhance mechanical strength and durability of aerospace components 🛠️. Dr. An’s work is highly relevant to aerospace repair, additive manufacturing, and metallurgical innovation, marking her as a rising talent in the field 🚀📈.

Dr jinlan An, Shenyang Aerospace University, China

Profile

SCOPUS

Experience 🧑‍🏫

Dr. Jinlan An currently serves as a Lecturer at the Key Laboratory of Fundamental Science for National Defense of Aeronautical Digital Manufacturing Process, Shenyang Aerospace University 🏛️. Her professional work focuses on laser deposition repair of high-performance alloys, particularly GH4169 🛠️. She specializes in examining the effects of electric pulsed current ⚡ on microstructural evolution, including the behavior of phases like the Laves phase and γ″ precipitation 🔍. Through this, she aims to enhance mechanical properties such as strength and durability 🔧. Her experience aligns strongly with applications in aerospace repair, additive manufacturing, and defense materials ✈️🧬.

Research Project 

Dr. Jinlan An is currently leading a research project on the evolution of phase transformations in GH4169 alloy during laser deposition repair under the influence of electric pulsed current ⚡🧪. Her work aims to understand how specific microstructural changes—such as Laves phase dissolution and γ″ phase precipitation—affect the mechanical properties of the repaired alloy 🛠️. This project has crucial implications for aerospace applications, where material reliability and strength are critical ✈️🔧. By optimizing energy input and phase behavior, her study contributes to advanced metallurgical techniques and more efficient additive manufacturing workflows 🔄🧱.

Research Focus 🔬

Dr. Jinlan An’s research centers on the microstructure and properties of GH4169 nickel-based superalloy subjected to laser deposition repair combined with electric pulsed current ⚡. She investigates how phase transformations—including Laves phase dissolution and γ″ precipitate formation—govern mechanical behavior such as tensile strength, hardness, and fatigue resistance 🛠️. By correlating processing parameters (energy density, pulse duration) with microstructural evolution (grain size, phase distribution), she aims to tailor material performance for critical aerospace components ✈️. Her work advances additive manufacturing and defense materials by optimizing repair strategies to achieve reliable, high-performance alloys 📈.

Contributions 🧪

Dr. Jinlan An has made impactful contributions to understanding the mechanical enhancement of GH4169 alloy through laser deposition repair under electric pulsed current ⚡. Her findings show that mechanical strength improves as energization time increases 🔧📈. She discovered the partial dissolution of the Laves phase into the matrix and the precipitation of the γ″ phase, which grows in size with longer current exposure 🔬. These insights reveal how phase evolution directly influences alloy performance, offering valuable guidance for repair strategies in aerospace materials engineering ✈️ and advanced metallurgy 🔩.

Publications 📚

Mechanism of Improving Microstructures of Laser Deposition Repaired GH4169 Alloy by Pulse Current
✍️ Authors: J. An, Jinlan; H. Li, Haopu; S. Zhou, Song; B. Gao, Bo; F. Chen, Fulong
📚 Journal: Zhongguo Jiguang / Chinese Journal of Lasers, 2025
🔬 Theme: Microstructure optimization, GH4169 alloy, pulse current, laser deposition repair
⚙️ Highlights: Investigates how pulse current enhances the microstructure during laser deposition repair of high-performance alloys

Effect of Heat Treatment on Microstructure and Mechanical Properties of TA15 Titanium Alloy Repaired by Laser Deposition
✍️ Authors: S. Zhou, Song; L. Wang, Lanbin; J. An, Jinlan; B. Wu, Bin; X. Zhang, Xiaochen
📚 Journal: Journal of Materials Engineering and Performance, 2025
🔥 Theme: Heat treatment, titanium alloy, microstructure-performance relationship, laser repair
🔧 Highlights: Explores how post-repair heat treatment influences structural integrity and mechanical properties of TA15 alloy

Prof Norasikin Othman | Materials Science | Best Researcher Award

Prof Norasikin Othman | Materials Science | Best Researcher Award

Prof. Dr. Norasikin Othman is a distinguished professor in the Chemical Engineering Department at Universiti Teknologi Malaysia (UTM). With a career spanning over three decades, she has made significant contributions to chemical engineering research, particularly in liquid membrane technology and solvent extraction processes. She is a passionate educator, accomplished researcher, and active professional member in renowned engineering societies.

Prof Norasikin Othman, Universiti Teknologi, Malaysia 

Profile

GOOGLESCHOLAR

ORCID

🎓 Academic Background

Prof. Dr. Norasikin Othman is a highly accomplished Chemical Engineer 🏗️ with an extensive academic background from Universiti Teknologi Malaysia (UTM). She earned her PhD in Chemical Engineering 🧪 in 2006, specializing in metal recovery using emulsion liquid membrane technology. Prior to this, she obtained her Master of Engineering (M.Eng.) in Chemical Engineering ⚙️ in 1997, enhancing her expertise in separation processes. Her journey began with a Bachelor’s degree in Chemical Engineering 🔬 in 1992, building a strong foundation in industrial applications. With her vast knowledge, she has contributed significantly to research, innovation, and academic excellence. 🚀

👨‍🏫 Professional Experience 

Prof. Dr. Norasikin Othman is a distinguished researcher and chemical engineering expert ⚙️ with extensive experience in academic evaluations, journal reviewing, and scientific conferences 🌍. She serves as a reviewer for high-impact Q1 & Q2 journals 📖, including Journal of Separation and Purification, Desalination, and Chemical Engineering Research & Design. She is also a technical evaluator panel member for major research grants, including GUP TIER 1, FRGS, and YUTP 🏆. A sought-after invited speaker 🎤, she has shared her insights at ICoST, ICCSS, and UTM seminars. Her contributions extend to book evaluations, panel reviews, and scientific committee roles. 🏅

🏆 Honors & Awards 

Prof. Dr. Norasikin Othman has received numerous prestigious awards 🏅 for her contributions to chemical engineering research and innovation 🔬. She has won multiple Gold, Silver, and Bronze Medals 🥇🥈🥉 at INATEX, MTE, and Seoul International Invention Fair, recognizing her groundbreaking work in silver recovery, dye recovery, and high-voltage demulsification ⚙️. She also received the Excellence Service Award (2008, 2012) for her dedication to academia 🎓. Notably, she earned the Best Award (MTE 2010) and Publication Award (2007) 📖. Her Bio-Inno Awards highlight her contributions to biotechnology and applied sciences, making her a distinguished researcher in her field. 🚀

🔬 Research Focus

Prof. Dr. Norasikin Othman specializes in separation processes ⚗️, with a focus on solvent extraction and liquid membrane technology 🌊. Her research aims to develop synergistic liquid membranes for removing and recovering pollutants from industrial wastewater 🚰. She explores reactive dye removal, phenol extraction kinetics, and chromium removal using eco-friendly membranes 🍃. Her innovative work on green liquid membrane formulation enhances metal and dye recovery, contributing to sustainable environmental solutions 🌍. By integrating advanced membrane fabrication 🏭, she addresses critical challenges in wastewater treatment, promoting cleaner industrial practices and efficient resource recovery 🔄.

📚 Publications

Separation of silver from photographic wastes by emulsion liquid membrane system 🧪
👨‍🏫 Authors: N. Othman, H. Mat, M. Goto
📖 Journal: Journal of Membrane Science 282 (1-2), 171-177 (2006)
📊 Citations: 210

Review of research progress on aluminium–magnesium dissimilar friction stir welding 🔩
👨‍🏫 Authors: L.H. Shah, N.H. Othman, A. Gerlich
📖 Journal: Science and Technology of Welding and Joining 23 (3), 256-270 (2018)
📊 Citations: 160

Performance of plastic wastes in fiber-reinforced concrete beams 🏗️
👨‍🏫 Authors: F.S. Khalid, J.M. Irwan, M.H.W. Ibrahim, N. Othman, S. Shahidan
📖 Journal: Construction and Building Materials 183, 451-464 (2018)
📊 Citations: 128

Easy removal of phenol from wastewater using vegetable oil-based organic solvent in emulsion liquid membrane process 🌱💧
👨‍🏫 Authors: N. Othman, N.F.M. Noah, L.Y. Shu, Z.Y. Ooi, N. Jusoh, M. Idroas, M. Goto
📖 Journal: Chinese Journal of Chemical Engineering 25 (1), 45-52 (2017)
📊 Citations: 111

Highly selective transport of palladium from electroplating wastewater using emulsion liquid membrane process ⚛️
👨‍🏫 Authors: N.F.M. Noah, N. Othman, N. Jusoh
📖 Journal: Journal of the Taiwan Institute of Chemical Engineers 64, 134-141 (2016)
📊 Citations: 90

Assist. Prof. Dr Chuan-De Liu | Materials in Aerospace Applications | Best Researcher Award

Assist. Prof. Dr Chuan-De Liu | Materials in Aerospace Applications | Best Researcher Award

Assist. Prof. Dr. Chuan-De Liu is a Lecturer at the School of Future Technology, Nanjing University of Information Science and Technology 🏛️. He holds a Ph.D. in Electrical Engineering from Southeast University (2022) and was a CSC Visiting Scholar at ENSTA-IP Paris, France (2020) 🌍. His research focuses on robotic dexterous manipulation, AI-augmented visual servoing, and autonomous unmanned systems 🚁. He has published high-impact articles in IEEE-CYBER, Complex & Intelligent Systems, and Industrial Robot 📚. His expertise in robotics, AI-driven control, and industrial automation makes him a leading innovator in intelligent robotic systems 🏆✨.

Assist. Prof. Dr Chuan-De Liu, School of Future Technology, China

Profile

GOOGLESCHOLAR

Education🎓📚

Assist. Prof. Dr. Chuan-De Liu earned his Ph.D. in Electrical Engineering from Southeast University in March 2022 🎓, where he specialized in robotic planning, control, and AI-driven automation 🤖. In September 2020, he was a CSC Visiting Scholar in Robotics at ENSTA-IP Paris, France 🌍, gaining international experience in robotic dexterous manipulation and autonomous systems 🚀. He previously completed his Master’s degree (MEng) in Electrical Engineering at Southeast University in December 2016 ⚡. His strong academic background in robotics, AI, and intelligent control systems provides the foundation for his cutting-edge research in automation and robotics 🔬✨.

Honors and Awards🏆

Assist. Prof. Dr. Chuan-De Liu has received multiple prestigious awards for his contributions to robotics and engineering 🤖. In 2023, he was honored as the NUIST Excellent Supervisor for Undergraduate Thesis 🏛️. He was awarded the China Scholarship Council (CSC) Scholarship (2019) for his research in robotics at ENSTA-IP Paris, France 🌍. His Bionic-Robot research earned him a Finalist position for the Best Student Paper Award at IEEE-CYBER 2019 📜. Additionally, he won Jiangsu Province’s Outstanding Master’s Thesis Award (2018) 🏅 and secured the NaRi-Relays Scholarship (2016) for excellence in electrical engineering ⚡.

Research Focus🤖

Assist. Prof. Dr. Chuan-De Liu’s research focuses on robotics, AI-driven automation, and intelligent control systems 🚀. His expertise includes robotic dexterous manipulation, autonomous UAV systems, and motion planning for industrial robots 🤖. He develops advanced control techniques for floating wind turbines, bionic-robot movement planning, and high-precision sensing systems ⚡. His work in disturbance observer-based sliding mode control, satellite-borne calibration, and robotic vision processing enhances autonomous system performance 🌍. With a strong foundation in robotic safety, real-time motion planning, and intelligent inspection platforms, his research contributes significantly to next-generation automation and AI-driven robotics 🏆✨.

Publications📚

Reconfigurable High-Precision AC Voltage Detector for Aerospace Applications
🖊️ Authors: L. Jiang, L. Zhu, C. Liu, Q. Hou
📖 Journal: Measurement (2025)

An Adaptive Dual-Docking Force Control of Ship-Borne Manipulators for UAV-Assisted Perching
🖊️ Authors: C. Liu, S. Fang, J. Li, B. Gao
📖 Journal: IEEE-CYBER (2024)

High-Precision and Wide-Range Temperature Measurement and Control System of Satellite-Borne Calibration Blackbody
🖊️ Authors: L. Jiang, C. Liu, L. Zhu, Z. Zhang, Q. Hou
📖 Journal: Measurement (2024)

A Self-Constructed CNN Classifier for Keyhole Detection and Location
🖊️ Authors: J. Ye, B. Gao, H. Chen, W. Xu, L. Zhong, C. Liu
📖 Journal: IEEE Sustainable Power and Energy Conference (iSPEC) (2020)

Towards a Balancing Safety Against Performance Approach in Human–Robot Co-Manipulation for Door-Closing Emergencies
🖊️ Authors: C. Liu, C. Yu, B. Gao, S.A. Ali Shah, A. Tapus
📖 Journal: Complex & Intelligent Systems (2022)

Self-Protective Motion Planning for Mobile Manipulators in a Dynamic Door-Closing Workspace
🖊️ Authors: C. Liu, B. Gao, C. Yu, A. Tapus
📖 Journal: Industrial Robot (2021)

Movement Planning and Control of an Overhead Power Transmission Line Inspection Bionic-Robot
🖊️ Authors: C. Liu, J. He, B. Gao
📖 Journal: IEEE-CYBER (2019)

These publications highlight Dr. Liu’s expertise in robotics, AI-driven control, intelligent automation, and precision engineering 🤖🚀.

Tianyu Ma | Metals and Alloys | Best Researcher Award

Tianyu Ma | Metals and Alloys | Best Researcher Award

Dr Tianyu Ma, Xi’an Jiaotong University, China

Dr. Tianyu Ma is a renowned researcher in materials science, specializing in high-performance materials for aerospace applications. He holds a Ph.D. from Beijing University of Aeronautics and Astronautics and has postdoctoral experience at the National Institute for Materials Science (Japan) and Zhejiang University. Currently a professor at Xi’an Jiaotong University, his research focuses on materials for bearings and high-entropy alloys. With multiple publications in top journals like Nature and Advanced Materials, Dr. Ma’s work impacts aerospace, automotive, and energy industries, focusing on enhancing material performance in extreme environments. ✈️🔬

Publication Profile

Scopus

Orcid

Educational Background 🎓

Dr. Tianyu Ma holds a Ph.D. in Materials Science and Engineering from Beijing University of Aeronautics and Astronautics, where he also completed his Bachelor’s degree. His research focuses on multi-scale analysis of materials for high-performance bearings, specifically in aeroengines. These bearings endure extreme conditions like high temperatures, high speeds, and depleted oil, making them prone to failure. Dr. Ma investigates the damage mechanisms of bearing materials across macro to micro scales, aiming to understand and improve the evolution of bearing failure. His work plays a critical role in enhancing the durability and performance of aerospace components. ✈️🔬

Current Role and Focus 💼

Dr. Tianyu Ma is currently a Professor at Xi’an Jiaotong University’s Frontier Institute of Science and Technology, a position he has held since November 2017. Prior to this, he served as a Postdoctoral Researcher and Associate Professor at Zhejiang University’s Department of Materials Science and Engineering from 2006 to 2017. Additionally, Dr. Ma worked as a JSPS Foreign Postdoctor at the National Institute for Materials Science in Japan from 2011 to 2013, contributing to research in ferroic physics. His extensive academic career spans institutions in China and Japan, focusing on advanced materials for aerospace and engineering applications. 🎓🌍

Research Focus Area 🌱🧬

Dr. Tianyu Ma’s research primarily focuses on advanced materials for high-performance applications, particularly in aerospace and magnetic materials. His work involves multi-scale analysis of materials, such as 8Cr4Mo4V alloy, and exploring damage mechanisms through molecular dynamics simulations. He has also contributed significantly to the development of high-entropy alloys, magnetic materials, and alloys with enhanced mechanical properties like strength, ductility, and thermal expansion. His publications in Nature, Acta Materialia, and Advanced Materials reflect his deep engagement with materials science, especially in the areas of ultrahigh-strength alloys, magnetic performance, and thermally stable materials for extreme conditions. 🛠️✈️🧲

Publication Top Notes📄✨

Enhanced magnetic performance of Fe-rich Sm2Co17-type magnets by optimizing Zr content

Rapid-thermal-process pre-treatment promoted precipitation towards strengthening hard magnetism of Sm2Co17-type magnets

Large Non‐Hysteretic Volume Magnetostriction in a Strong and Ductile High‐Entropy Alloy

Local Displacive Phase Transformation in Large-Magnetostriction Alloy Fe81Ga19

Formation of semi-coherent Zr-rich lamellar phase in 2:17-type Sm-Co-Fe-Cu-Zr magnets with high Fe content

Atomic scale understanding the periodic modulation in ferroelastic alloy Ni-Mn-Ti

Toughening Ceramics down to Cryogenic Temperatures by Reentrant Strain-Glass Transition

Origin of hard magnetism in Fe-Co-Ni-Al-Ti-Cu high-entropy alloy: Chemical shape anisotropy

Conclusion 🔍

Dr. Tianyu Ma’s extensive academic background, innovative research, and prolific publication record make him a strong candidate for the Best Researcher Award. His work bridges fundamental material science with applied engineering, particularly in the area of multi-scale materials analysis, which is essential for improving high-performance bearings and magnets. His ongoing contributions to the development of advanced materials for challenging environments align well with the goals of this award.