Dr Feryal Akay | Biomaterials | Best Researcher Award

Dr Feryal Akay | Biomaterials | Best Researcher Award

Dr. Feryal Akay is a PhD graduate in Chemistry from Dicle University (2023), specializing in human immunoglobulin G glycation and the effects of Morus nigra leaf extract on DNA glycation. She has participated in key national projects and has contributed to high-impact publications in journals like Archives of Biochemistry and Biophysics (2025) and Indian Journal of Biochemistry and Biophysics (2024). With experience as an Ar-Ge specialist at Labixir, Dr. Akay is deeply committed to advancing glycation research and is a strong candidate for the Best Researcher Award. 📚🧬🌿

Dr Feryal Akay, University of Dicle, Turkey

Profile

ORCID

SCOPUS

Education🎓

Dr. Feryal Akay completed her PhD in Chemistry at Dicle University in 2023, with a thesis on the glycation of human immunoglobulin G and its impact on antigen binding, supervised by Prof. Dr. Göksel Kızıl and Prof. Dr. Beran Yokuş. She also earned her Master’s in Chemistry from the same university in 2018, focusing on the effects of Morus nigra leaf ethanol extract on DNA glycation. Dr. Akay completed her Bachelor’s degree in Chemistry in 2015 at Dicle University’s Faculty of Science. 🎓🧪📜

Experience🩺

Dr. Feryal Akay worked as an Ar-Ge (Research and Development) Specialist at Labixir, a pharmaceutical analysis laboratory, from November 2021 to August 2022. In this role, she contributed to various research and development projects, specializing in pharmaceutical analysis and innovative techniques in the field. Her work involved analyzing and improving the efficacy of pharmaceutical products, contributing to the advancement of the pharmaceutical industry. Dr. Akay’s experience in this commercial sector allowed her to apply her academic expertise in a practical, real-world environment, further enhancing her skill set in both research and pharmaceutical development. 💊🔬🧪

Certificate 🏅

Dr. Feryal Akay has earned several prestigious certificates for her participation in international conferences. She attended the 1st International Multidisciplinary Cancer Research Congress held at Dicle University in Diyarbakır from 18-22 September 2019. She also participated in the INESEC 2018, The International Engineering Natural Science Conference, from 14-17 November 2018. Additionally, Dr. Akay presented a Oral Presentation at the 6th International Congress on Pharmaceutical Chemistry in Antalya/Belek, held by Atatürk University and the Chemists Association, from 22-25 March 2018. 🏅🎓🌍📚

Research Focus 🔬

Dr. Feryal Akay’s research primarily focuses on glycation and its impact on immune function. Her studies explore how fructose-derived glycation affects antigen binding in human IgG and lymphocytes, aiming to better understand the role of glycation in immune responses (Archives of Biochemistry and Biophysics, 2025). Additionally, Dr. Akay has investigated the inhibitory effects of Morus nigra leaf extract on DNA glycation and its potential in preventing advanced glycation end products (Indian Journal of Biochemistry and Biophysics, 2024). Her work also includes the antiglycative effects of Capsicum annuum (chili) and pyridoxamine in experimental diabetes models (Revista Brasileira de Farmacognosia, 2023). 🌱🧬🔬

Publications📚

Fructose-derived glycation and immune function: Effects on antigen binding in human IgG and lymphocytes 🧬

  • Authors: Feryal Akay, Nesrin İnceören, Cemal Nas, Beran Yokuş, Göksel Kızıl, Murat Kızıl
  • Journal: Archives of Biochemistry and Biophysics

Evaluation of ethanol extract of Morus nigra L. as an inhibitory agent for DNA-Advanced glycation end product (DNA-AGEs) 🍃

  • Authors: Feryal Akay
  • Journal: Indian Journal of Biochemistry and Biophysics

Antiglycative Effect of Combination of Extracts of Capsicum annuum (chilli) and Pyridoxamine Against Glycation in Streptozotocin-induced Experimental Diabetes in Rats 🌶️

  • Authors: Nesrin İnceören, Feryal Akay, Cemal Nas, Engin Deveci, Göksel Kızıl, Murat Kızıl
  • Journal: Revista Brasileira de Farmacognosia

Determination Of Antioxidant Activity of Dietary Selenium, Oleuropein, Glutathione Mixture 🥗

  • Authors: Feryal Akay, Göksel Kızıl
  • Journal: European Journal of Technic

Dr Xiong-Xin Lei | Biomaterials | Best Researcher Award

Dr Xiong-Xin Lei | Biomaterials | Best Researcher Award

Dr Xiong-Xin Lei, First People’s Hospital of Foshan, China

Dr. Xiong-Xin Lei, a distinguished postdoctoral researcher at the First People’s Hospital of Foshan, holds a Ph.D. in Medicine from Sichuan University. With expertise in functional hydrogels, his groundbreaking research focuses on innovative applications in endoscopic treatments, hemostasis, and wound repair. Over the last five years, Dr. Lei has authored eight high-impact papers in prestigious journals like Bioactive Materials and Advanced Science. His dedication to innovation is evident in his seven granted patents, making significant strides in biomaterials and regenerative medicine. Dr. Lei’s work exemplifies excellence in bridging science and clinical applications

Publication Profile

Scopus

Academic Background🎓

Dr. Xiong-Xin Lei has a strong academic background in medicine and biomedical engineering. 🎓 He is currently a Post-Doctoral Fellow at the First People’s Hospital of Foshan, China, since August 2022. 🏥 Dr. Lei earned his Doctor of Medicine degree from Sichuan University (2019–2022), specializing in microbiology and biochemical pharmacy. 🔬 He also holds a Master of Medicine degree (2015–2017) and a Bachelor of Engineering degree (2011–2015) from Beijing University of Chinese Medicine, focusing on biopharmaceuticals and biomedical engineering, respectively. 💊 His expertise combines advanced medicine and engineering techniques for innovative healthcare solutions. 🌟

Research Focus Area 🌱🧬

Dr. Xiong-Xin Lei specializes in the development, design, and application of functional hydrogels for biomedical purposes. 🧬 His research focuses on innovative solutions for endoscopic treatments of the digestive tract, hemostasis, and wound repair. 🩺 Over the past five years, he has made significant contributions, publishing 8 research papers in prestigious journals such as Bioactive Materials, Advanced Science, and Chemical Engineering Journal. 📚 Additionally, Dr. Lei holds 7 granted invention patents, reflecting his innovative approach to medical applications of hydrogels. 💡 His work bridges materials science and regenerative medicine for advanced healthcare solutions. 🌟

Notable Achievements

Dr. Xiong-Xin Lei has achieved remarkable success in his research career over the past five years. 🌟 He has authored eight high-impact research papers published in prestigious journals such as Bioactive Materials, Advanced Science, and Chemical Engineering Journal. 📚 His groundbreaking studies have made significant contributions to the fields of regenerative medicine and smart materials, particularly in developing innovative hydrogels for medical applications. 🧬 Dr. Lei’s work highlights his dedication to advancing healthcare solutions through cutting-edge research, earning him recognition as a leader in his field. 🩺✨

Publication Top Notes🌟📊📚

Multi-crosslinking hydrogels with robust bio-adhesion and pro-coagulant activity for first-aid hemostasis and infected wound healing

A Self-Assembly Pro-Coagulant Powder Capable of Rapid Gelling Transformation and Wet Adhesion for the Efficient Control of Non-Compressible Hemorrhage

Application of metabolomics in urolithiasis: the discovery and usage of succinate

Multifunctional two-component in-situ hydrogel for esophageal submucosal dissection for mucosa uplift, postoperative wound closure and rapid healing

Click-crosslinked in-situ hydrogel improves the therapeutic effect in wound infections through antibacterial, antioxidant and anti-inflammatory activities

Scarless Healing of Injured Vocal Folds Using an Injectable Hyaluronic Acid-Waterborne Polyurethane Hybrid Hydrogel to Tune Inflammation and Collagen Deposition

Promotion of right ventricular outflow tract reconstruction using a novel cardiac patch incorporated with hypoxia-pretreated urine-derived stem cells

 

 

Omar Khatir | Biomaterials | Best Researcher Award

Omar Khatir | Biomaterials | Best Researcher Award

Dr Omar Khatir, University of Sidi Bel Abbes, Algeria 

Dr. Omar Khatir is an accomplished researcher specializing in biomechanics and biomaterials, with a focus on medical device innovation. 🎓⚙️ Holding a Ph.D. in Mechanical Engineering, his work advances middle ear prostheses and orthopedic implants, utilizing finite element modeling, hydroxyapatite, and honeycomb structures for improved performance. 🦻🦾 Dr. Khatir has authored high-impact publications and presented at prestigious conferences like IConTES 2024 and SNIBIA 2023. 🌍📚 Proficient in tools like MATLAB, Abaqus, and SolidWorks, he bridges academia and industry through teaching, research, and production management. His contributions enhance healthcare technology and patient outcomes, cementing his status as a leader in the field. 🌟💡

Publication Profile

Orcid

Educational Background 🎓

Dr. Omar Khatir has an impressive academic foundation in mechanical engineering 🎓⚙️ from Djilali Liabès University, Sidi Bel Abbes. Currently pursuing a Ph.D. (2022–2025), his research focuses on the mechanical behavior of biomaterials for middle ear prosthesis implants. 🦻 Prior to this, he earned a Master’s degree (2019–2021), specializing in design and simulation, with a thesis on developing a torsion test bench. 🛠️ He also holds a Bachelor’s degree (2016–2019), where he analyzed performance anomalies in Wankel engines. 🔧 His academic journey began with a Baccalaureate in Math-Technics (2016), emphasizing electrical engineering. 🔌📐

Professional Experience 💼

Dr. Omar Khatir has diverse professional experience in mechanical engineering 🛠️. As a University Lecturer (2023–2024) at Djilali Liabès University, he teaches undergraduate and postgraduate courses, supervises student research, and conducts biomechanical research 🏫🔬. Previously, as a Workshop Manager (2022–2023) at the Military Clothing and Sleeping Establishment, he managed production processes, maintained quality standards, and oversaw equipment maintenance ⚙️. Between 2019 and 2022, he worked as a Freelance Mechanical Engineer, providing engineering services in automotive mechanics 🚗 and agricultural equipment maintenance 🚜. He also gained industrial experience through an internship at CMA-Sidi Bel Abbes in 2019.

International Conferences 🌐

Dr. Omar Khatir has actively participated in international conferences 🌍, presenting his research on biomaterials and medical devices. He delivered a poster presentation at the International Conference on Technology, Engineering, and Science (IConTES) 2024 in Antalya, Turkey, evaluating Polyetheretherketone (PEEK) as an alternative to titanium in middle ear implants 🦻. At SNIBIA 2023 in Algeria, he gave an oral presentation on the behavior of middle ear prostheses using finite element modeling 🧠. He also presented on biocompatible materials with hydroxyapatite coating at SDACM 2024 in Algeria.

Research Focus Area 🌱🧬

Dr. Omar Khatir focuses on biomechanics and biomaterials, with particular emphasis on medical implants. His research addresses the mechanical behavior of materials used in middle ear prostheses and orthopedic implants 🦻💪. Dr. Khatir explores finite element modeling for optimizing prosthesis performance, applying advanced material degradation techniques and studying biocompatible materials like hydroxyapatite for implants 🦠. His work aims to improve patient outcomes by enhancing implant design, particularly with honeycomb structures and multi-cellular foam technology used in prosthetics and orthopedic devices. His research significantly impacts medical device optimization for better patient quality of life.

Publication Top Notes

Enhancing pressure ulcer prevention through optimized design of a multi-cellular foam mattress

Enhancing middle ear implants: Study of biocompatible materials with hydroxyapatite coating

Enhanced orthopedic implant design for transfemoral amputation incorporating a honeycomb structure technology

Multi-objective optimization of prosthetic multi-cells foam liner

Optimizing mechanical behavior of middle ear prosthesis using finite element method with material degradation FGM in three functions

Evaluation and Comparison of the Mechanical Behaviors of a Middle Ear Prosthesis using the Finite Element Method

Conclusion 🔍

Dr. Omar Khatir is highly suitable for consideration for a Best Researcher Award based on his academic background, research achievements, practical contributions, and impact on healthcare technology. His dedication to advancing medical device technology and improving patient outcomes makes him a strong contender.

Dalia Zaafar | Biomaterials | Women Researcher Award

Dalia Zaafar | Biomaterials | Women Researcher Award

Assist. Prof. Dr Dalia Zaafar, Cairo University, Egypt

Dr. Dalia Zaafar is an Assistant Professor at Modern University for Technology and Information (MTI) in Egypt, specializing in pharmacology, toxicology, and clinical pharmacy. With a Ph.D. from Cairo University, she has led impactful research on cardiovascular pharmacology and oncology. 🌍 Her work includes clinical studies, focusing on metformin and sorafenib, contributing to drug safety. Dr. Zaafar is passionate about mentoring young researchers, especially women in academia, and has presented at international conferences. 🎓 She holds certifications in clinical practice and data analysis, enhancing her role as an expert in her field. 📚

Publication Profile

Google Scholar

Orcid

Scopus

Educational Background 🎓

Dr. Dalia Zaafar holds a Ph.D. in Pharmacology and Toxicology from Cairo University (2019), with a focus on clinical studies and cardiovascular pharmacology. Her dissertation explored the efficacy and safety of dipeptidyl peptidase inhibitors versus Metformin in diabetic hypertensive patients. 🎓 She earned an M.A. in Pharmacology and Toxicology from Suez Canal University (2014), specializing in oncology and endocrinology. Dr. Zaafar also completed a Clinical Pharmacy diploma (2019-2021) in critical care and further honed her skills through a Data Analysis Professional Nano-degree (2021) and other specialized certifications in clinical pharmacology and pharmacoeconomics. 📚💻

Current Role and Focus 💼

Dr. Dalia Zaafar is an Assistant Professor at the Modern University for Technology and Information (MTI), Egypt, where she has been teaching and conducting research since 2019. 🌟 She designs experimental studies, collaborates internationally, and mentors young researchers. Additionally, she serves on the editorial boards of the Universal Journal of Pharmaceutical Research and the World Journal of Clinical Cases. 📘 Previously, she worked as a Clinical Pharmacist in critical care at Teacher’s Hospital and Abu Sower Medical Center. Dr. Zaafar has expertise in clinical pharmacy, research supervision, and interdisciplinary initiatives, fostering academic growth and innovation. 🧪👩‍🏫

Participation in Conferences 🌐

Dr. Dalia Zaafar was a speaker at the 18th International Conference of Biochemistry and Molecular Biology, held on September 16-17, 2023. 🌍 Her lecture, titled “Unravelling the Complexities of Tau Protein Dysfunction in Alzheimer’s Disease: Pathophysiology, Biomarkers, and Therapeutic Perspectives”, highlighted groundbreaking insights into the mechanisms of Alzheimer’s disease. 🧠🔬 She discussed emerging biomarkers and innovative therapeutic strategies, contributing to a deeper understanding of this critical neurodegenerative condition. Dr. Zaafar’s presentation underscored her expertise in molecular biology and her dedication to advancing research for a better future for humanity. 🌟

Research Focus Area 🌱🧬

Dr. Dalia Zaafar’s research is focused on pharmacology, toxicology, and clinical pharmacy, with a multidisciplinary approach to tackling critical health challenges. 🧪 Her studies emphasize drug safety, cardiovascular pharmacology, and oncology, exploring innovative therapeutic interventions for diseases like Alzheimer’s, Parkinson’s, colon cancer, and drug-induced toxicities. 🔬 Her work integrates molecular biology, nanotechnology, and experimental pharmacology, addressing mechanisms like tumor angiogenesis, neuroprotection, and signal pathway modulation. 🌍 Dr. Zaafar’s impactful contributions also span natural product-based therapies, nanoparticles for drug delivery, and biomarker development, making her a pioneer in advancing personalized medicine and enhancing treatment efficacy. 🌟

Publication Top Notes📚🌐

Role of metformin in suppressing 1, 2-dimethylhydrazine-induced colon cancer in diabetic and non-diabetic mice: effect on tumor angiogenesis and cell proliferation

Hesperetin mitigates sorafenib-induced cardiotoxicity in mice through inhibition of the TLR4/NLRP3 signaling pathway

Selenium nanoparticles with prodigiosin rescue hippocampal damage associated with epileptic seizures induced by pentylenetetrazole in rats

Orexin pathway in Parkinson’s disease: a review

Discovery of new 1, 3, 4-oxadiazoles with dual activity targeting the cholinergic pathway as effective anti-Alzheimer agents

Comparing the effectiveness of L-carnitine and paraffin oil in acute aluminum phosphide poisoning using predictive biomarkers and scores: a randomized controlled clinical trial

Adherence to insulin therapy among children with type 1 diabetes: reliability and validity of the Arabic Version of the 4-Item Morisky Medication Adherence Scale

Combined β-sitosterol and trimetazidine mitigate potassium dichromate-induced cardiotoxicity in rats through the interplay between NF-κB/AMPK/mTOR/TLR4 and HO-1/NADPH signaling …

Salix subserrata Bark ExtractLoaded Chitosan Nanoparticles Attenuate Neurotoxicity Induced by Sodium Arsenate in Rats in Relation with HPLC–PDA-ESI–MS …

Conclusion 🔍

Dr. Dalia Zaafar’s dedication to research excellence, her leadership in mentoring young women researchers, and her impressive body of scholarly work make her a highly suitable candidate for the Women Researcher Award. Her contributions to pharmacology, particularly in clinical studies, and her active role in global research collaborations position her as an influential figure in the academic community.

Vinutha Moses | Biomaterials | Biomaterials Excellence

Vinutha Moses | Biomaterials | Biomaterials Excellence

Dr Vinutha Moses, RV College of Engineering, India

Dr. Vinutha Moses is a dedicated researcher and educator in biomaterials and chemical engineering, with extensive experience as an Assistant Professor at R.V. College of Engineering and Sapthagiri College of Engineering. Her work focuses on sustainable materials, innovative biomaterials, and eco-friendly solutions. Key publications include studies on bio-resins from organic waste, nanotechnology in water treatment, and high-strength cellulose resins for wood composites. Actively engaged in conferences and workshops, she continually enhances her expertise in AI, sustainable technologies, and biomaterial applications. Her strong academic background and commitment to sustainable innovation make her a valuable contributor to biomaterials research. 🌱🔬📚

Publication Profile

GoogleScholar

Orcid

Educational Background 🎓

Dr. Vinutha Moses holds an MSc(Res) and is pursuing a Ph.D. in Chemical Engineering from RV College of Engineering, Bangalore, Karnataka, India. Her advanced studies emphasize the development of sustainable and innovative materials, highlighting her expertise in chemical processes and biomaterials. Her academic background is grounded in rigorous research and applications that bridge chemical engineering with environmental sustainability. This educational foundation supports her ongoing contributions to the field, aligning with her broader interests in eco-friendly solutions and innovative research. Dr. Moses’ qualifications reflect her commitment to academic excellence and impactful research. 🎓🔬🌱

Current Role and Focus 💼

Dr. Vinutha Moses has extensive teaching experience in chemical engineering, having worked as an Assistant Professor at R.V. College of Engineering since 2016 and Sapthagiri College of Engineering from 2012 to 2016. She has also served as a Lecturer in various institutions, including R.V. College of Engineering (2007), Nijaiingappa Educational Centre (2002-2003), and Good Wills Polytechnical College (2001-2002). In addition to her academic roles, she has coordinated technical and non-technical events, showcasing her leadership and organizational skills. Dr. Moses’ diverse teaching career reflects her dedication to education and research in chemical engineering. 👩‍🏫🔬📚

Research Focus Area 🌱🧬

Dr. Vinutha Moses’ research primarily focuses on biomaterials, sustainable materials, and environmental applications of chemical engineering. Her work includes the development of bio-resins from organic waste for high-strength composites, wastewater treatment using nanotechnology and microbial fuel cells, and exploring eco-friendly solutions like bio-based polymers and biofuels. She has also researched advanced applications in oil recovery, including microbial enhancement and biosurfactants. With a strong background in nanotechnology, her work spans the intersections of sustainability, chemical engineering, and innovative biomaterials for environmental impact. 🌱🔬💡

Participation at National/International Conference 🎓🌍

Dr. Vinutha Moses has actively contributed to various international conferences, showcasing her expertise in sustainable engineering and technology. She presented on “Integrated Waste Management Systems” at the International Conference on Sustainable Environment and Engineering (ICSEE’19) in 2019. Additionally, her work on “Nanotechnology as Antibacterial and Heavy Metal Removal in Wastewater Treatment” was featured at the International Conference on Sustainable Engineering and Technology (iConset 2018). Her contributions also include the development of bio-resins from organic waste for high-strength composites and research on electroless gold plating bath. Dr. Moses’ research continues to impact both environmental and material sciences. 🌍🔬♻️

Publication Top Notes📄✨

Microbial hydraulic acid fracturing

Economical synthesis of oxygen to combat the COVID-19 pandemic

Hydroxymethyl furfural (HMF) a high strength cellulose resin for wood composite laminates

Development of a bio-resin from organic waste and its application to make high strength composites

Biological synthesis of copper nanoparticles and its impact

Phytochemical profile, antibacterial and antidiabetic effects of crude aqueous leaf extract of Datura stramonium

Production of biofuel from micro algae (Chlorella pyrenoidosa) using vertical reactor system and effect of nitrogen on growth and lipid content

Use of Keratin Present in Chicken Feather as a Hydrogen Storage Material: A Review

Wastewater Treatment Using Anaerobic Fluidized Bed Membrane Bioreactor Coupled with Microbial Fuel Cells for Circular Economy

Conclusion 🔍

Dr. Vinutha Moses’ combination of academic roles, publication record, conference participation, and continuous professional development makes her well-suited for contributing to Research for Biomaterials Excellence. Her deep understanding of chemical engineering principles, applied research in sustainable materials, and active engagement in educational and research initiatives position her as a strong candidate for leading and collaborating on innovative biomaterials projects.