Assist. Prof. Dr ATUL PAWAR | Composite Materials | Editorial Board Member
MYONGJI UNIVERSITY | South Korea
Assist. Prof. Dr. Atul Pawar is a distinguished researcher in the field of inorganic chemistry and advanced functional materials, currently serving as an Assistant Research Professor in the Department of Energy Science and Technology (DEST) at the Environmental Waste Recycle Institute (EWRI), Myongji University, South Korea. With a strong academic foundation and extensive research experience in catalytic materials, electrochemical systems, and CO₂ utilization, his work has made notable contributions to sustainable energy conversion, carbon capture and conversion, and environmental waste recycling technologies. His research spans diverse areas including electrocatalysts for electrochemical CO₂ reduction reactions, thermo-catalytic degradation of polymers for hydrocarbon fuel generation, ionic liquid-based catalysts for cyclic and linear carbonates synthesis, solar steam generation, and high-performance aerogel fabrication from plastic and cellulose waste. Dr. Pawar has published 15 high-quality scientific documents in internationally indexed journals, which have collectively received 222 citations by 218 documents, demonstrating significant global recognition of his scientific impact. His scholarly influence is further reflected in his h-index of 8, highlighting the depth and consistency of his research contributions. As a first-author and corresponding author on multiple high-impact publications in journals such as Chemical Engineering Journal, Journal of CO₂ Utilization, Environmental Pollution, and Journal of Alloys and Compounds, he has actively advanced innovative catalytic and sustainable environmental solutions. His work is widely presented through numerous oral and poster sessions at prestigious international conferences, and he has earned recognition such as the Best Poster Award from the Korean Society of Industrial and Engineering Chemistry. Dr. Pawar’s research skills include advanced synthesis of metal oxide nanoparticles, ionic liquids, metal organic frameworks, and high-precision material characterization techniques, along with strong leadership, laboratory, and analytical expertise. A dynamic and visionary scientist, he continues to drive research excellence toward cleaner energy technologies, environmental remediation, and sustainable materials engineering.
Profile: Scopus
Featured Publication
Pawar, A. A., Jabasingh, S. A., & Kassahun, S. K. (2026). Incorporation of Mg/Al metal oxide into ionic liquids for CO₂ capture and conversion into cyclic carbonate under solvent-free conditions: Effect of coordination ability, recyclability, and catalytic study. Green Chemical Engineering.