Mr. Arif Aziz | Thermodynamics of Materials | Best Researcher Award

Mr. Arif Aziz | Thermodynamics of Materials | Best Researcher Award

Mr. Arif Aziz is a PhD student at Harbin Engineering University specializing in mechanical and power engineering with a focus on turbomachinery. He holds a Bachelor’s in Mechanical Engineering and a Master’s in Power Engineering and Engineering Thermophysics. His work explores advanced two-phase flow dynamics and working fluid mixtures in closed Brayton cycle compressors, with contributions to conference proceedings and peer-reviewed journals. His research is directed toward enhancing compressor performance and improving power cycle efficiency for applications in next-generation energy systems.

Mr. Arif Aziz | Harbin Engineering University | China

Profile

SCOPUS

Education

Mr. Aziz completed his Bachelor’s degree in Mechanical Engineering, followed by a Master’s degree in Power Engineering and Engineering Thermophysics, where he focused on aerodynamic analysis and optimization of compressors. Currently, he is pursuing his PhD at Harbin Engineering University in the same field, concentrating on developing optimized compressor designs for binary gas mixtures like helium-xenon and helium-nitrogen. His educational journey reflects a progressive specialization in fluid mechanics and turbomachinery design, providing a solid academic foundation for high-level research.

Experience

Mr. Arif Aziz has developed extensive experience in the field of turbomachinery and advanced power cycles through both academic research and practical design work. His expertise lies in two-phase flow analysis, compressor optimization, and the use of binary gas mixtures such as helium-nitrogen and helium-xenon for closed Brayton cycle applications. He has completed research projects on axial flow compressor optimization and is currently engaged in the design and performance evaluation of compressors for advanced energy systems. His work has been presented at academic conferences and published in peer-reviewed journals, contributing to the advancement of thermal engineering knowledge.

Research Contributions

Mr. Aziz has completed a research project on the optimization of an axial flow compressor and is presently engaged in a project investigating the thermodynamic and aerodynamic behavior of binary gas mixtures in closed Brayton cycle compressors. His research aims to enhance efficiency, stability, and power density in advanced energy systems. With publications in international journals such as Case Studies in Thermal Engineering and Journal of Hydrogen Energy, he contributes valuable insights into energy-efficient turbomachinery systems.

Research Focus

Mr. Azizโ€™s primary research focus lies in understanding and improving two-phase flow dynamics and working fluid interactions in compressors for closed Brayton cycles. His studies target helium-based mixtures to optimize cooling, efficiency, and power density, which are vital for nuclear and solar-thermal power generation. By combining experimental and computational techniques, he aims to deliver novel compressor designs that address energy efficiency challenges in next-generation power systems.

Publications

Optimization of an Axial Flow Compressor Cooling: A Numerical Study on Enhanced Wet Compression Technology
Authors: Arif Aziz, Ghulam Ishaque, Naseem Ahmad, Muhammad Haris

CO2 Capture Using Mixed Amines: Experimental DFT Investigation with Focus on Improvements in Cyclic Efficiency and NO Interference
Authors: Muhammad Haris, Arif Aziz, Muhammad Sohail, Waseem Sardar

Aerodynamic Performance Investigation of an Axial Flow Compressor Under Water Ingestion
Authors: Ghulam Ishaque, Qun Zheng, Naseem Ahmad, Arif Aziz

The Influence of the Casing Grooves on the Performance of an Axial Compressor
Authors: Naseem Ahmad, Ghulam Ishaque, Arif Aziz, Qun Zheng

Adaptive Multiplexing Technique for Mobile Networks Based on SNR
Authors: Abdul Ahad Dilshad, Muhammad Irfan, Adil Malik, Arif Aziz

Conclusion

Mr. Arif Aziz is an emerging researcher with a strong academic background, focused research direction, and contributions to improving energy system performance through turbomachinery innovations. His work is impactful for future clean energy solutions and demonstrates the potential for broader applications in advanced power cycles. These qualities collectively make him a suitable and competitive candidate for the Best Researcher Award.

Dr. Jingna Liu | Thermodynamics of Materials | Best Researcher Award

Dr. Jingna Liu | Thermodynamics of Materials | Best Researcher Award

Dr. Jingna Liu is an Assistant Professor at Sun Yat-sen University, with a doctoral degree in Soil Science from the University of Copenhagen. Her academic foundation bridges advanced environmental science and agricultural sustainability. After completing her Ph.D., she began her research and teaching career in China, focusing on soil fertility and agricultural waste valorization. Her professional trajectory demonstrates a commitment to improving nutrient management and promoting sustainable agriculture through interdisciplinary and applied research.

Dr. Jingna Liu | Sun Yat-Sen University | China

Profile

SCOPUS

Education

Dr. Liu earned her Ph.D. in Soil Science from a leading European institution, where she specialized in nutrient cycling and soil health. Her education integrated core aspects of environmental sustainability, microbiology, and agricultural chemistry. The combination of European academic standards and applied agricultural focus equipped her with both theoretical insight and practical skill, enabling her to address complex challenges in agricultural waste management and soil resource efficiency.

Experience

Dr. Liu has developed her academic career as an Assistant Professor at Sun Yat-sen University. She has completed and led multiple research projects related to agricultural waste recycling and soil fertility enhancement. Her experience includes both academic research and consultancy collaborations with industry stakeholders, contributing to real-world applications of her findings. With an active presence in both research and academic mentoring, she plays a significant role in advancing sustainable agricultural practices.

Contribution

Dr. Jingna Liuโ€™s research has made pivotal contributions to sustainable agriculture by optimizing the thermal drying process of solid digestate. Her work uncovered the fundamental mechanisms of nitrogen transformation and demonstrated that acidification prior to drying significantly reduces ammonia (NHโ‚ƒ) volatilization while enhancing plant-available nitrogen. This innovation boosts the fertilizer value of dried digestate, enabling its conversion into a nutrient-rich organic fertilizer. By improving nutrient retention and reducing dependency on synthetic fertilizers, her findings support circular agriculture, waste valorization, and improved environmental stewardship.

Research Focusย 

Dr. Liuโ€™s research focuses on the recycling and utilization of agricultural solid waste, soil fertility enhancement, and nitrogen use efficiency. She investigates thermal drying and acidification processes to optimize nitrogen retention and reduce environmental emissions. Her work emphasizes the transformation of organic waste into effective fertilizers, offering solutions for improving soil health and reducing dependence on chemical inputs. Her studies provide scientific insights that support practical applications in sustainable farming systems.

Publications

Effect of Acidification on Nitrogen Transformation of Solid Digestate During Thermal Drying
Authors: Weimin Wu, Jingna Liu
Journal: Published July 2025

Acidification Prior to Drying of Digestate Solids Affects Nutrient Uptake and Fertilizer Value When Applied to Maize
Authors: Jingna Liu, Dorette Sophie Mรผller-Stรถver, Lars Stoumann Jensen
Journal: Published September 2024

Comparison of Alum and Sulfuric Acid to Retain and Increase the Ammonium Content of Digestate Solids During Thermal Drying
Authors: Jingna Liu, Lars Stoumann Jensen, Dorette Mรผller-Stรถver
Journal: Published June 2021

Acidified Animal Manure Products Combined with a Nitrification Inhibitor Can Serve as a Starter Fertilizer for Maize
Authors: Iria Regueiro, Peter Siebert, Jingna Liu, Lars Stoumann Jensen
Journal: Published December 2020

Methane Emission and Soil Microbial Communities in Early Rice Paddy as Influenced by Urea-N Fertilization
Authors: Jingna Liu, Huadong Zang, Heshui Xu, Zhaohai Zeng
Journal: Published December 2019

Increased Retention of Available Nitrogen During Thermal Drying of Solids of Digested Sewage Sludge and Manure by Acid and Zeolite Addition
Authors: Jingna Liu, Andreas de Neergaard, Lars Stoumann Jensen
Journal: Published September 2019

Conclusion

Dr. Jingna Liu is a promising and impactful researcher contributing to the advancement of sustainable agriculture through innovative research on nutrient recycling and soil fertility. Her scientific insights into nitrogen retention and emissions reduction place her as a suitable candidate for the Best Researcher Award. With expanded global engagement and broader application of her findings, she is well-positioned to become a leading figure in environmental soil science and sustainable waste management.

Dr. Enze Chen | Soft Materials | Best Researcher Award

Dr. Enze Chen | Soft Materials | Best Researcher Award

Dr. Enze Chen is a postdoctoral researcher in the Franck Lab at the University of Wisconsinโ€“Madison, where he explores high-strain-rate injury mechanisms in biological tissues. He earned his Ph.D. in Civil Engineering from Johns Hopkins University, where he specialized in architected and soft materials, combining digital design, additive manufacturing, and mechanical testing. His interdisciplinary research spans civil engineering, material science, and biomedical applications. His scholarly work has been published in high-impact journals such as Science Advances, IJSS, and Mechanics of Materials, establishing him as an emerging expert at the interface of materials mechanics and biology.

Dr. Enze Chen | University of Wisconsin-Madison | United States

Profile

SCOPUS

GOOGLE SCHOLAR

Education

Dr. Chen completed his Ph.D. and M.S. in Civil Engineering at Johns Hopkins University, following a B.S. from Nanjing Forestry University in China. His academic path has been marked by deep engagement in experimental mechanics, digital fabrication, and biomaterials research. During his doctoral studies, he worked under Prof. Stavros Gaitanaros and developed several new insights into the mechanics of brittle lattices, DNA nanostructures, and soft architected materials. He now applies this strong theoretical and experimental background to bioengineering challenges in his postdoctoral work.

Experience

Dr. Chen has extensive experience in the experimental and computational study of advanced materials. As a graduate researcher, he pioneered mechanical studies on brittle lattices and cellular foams using additive manufacturing and tomography. His work also included collaborative research on collagen scaffolds at Cornell University. At the University of Wisconsinโ€“Madison, he now investigates trauma-induced injury mechanics in brain tissue, including responses to blast waves and directed energy. He is a key contributor to the interdisciplinary PANTHER program and actively collaborates across institutions, positioning himself at the forefront of materials-for-health research.

Contributions

Dr. Enze Chenโ€™s research significantly advances the understanding of both architected and biological materials. He developed models to predict buckling behaviors in elastic tubular structures and correlated collagen scaffold microstructures with their mechanical deformation, aiding in biomedical scaffold design. He quantified the fracture toughness of brittle lattices and introduced a crystallography-inspired framework for designing 3D metamaterials with tunable mechanical, thermal, and permeability traits. In the biomedical domain, he identified mechanisms of secondary brain injury (like tauopathy and neuroinflammation) and created microsecond-micrometer platforms to measure tissue responses to blast and directed energy.

Award

Dr. Enze Chen received the prestigious Hickman Fellowship from Johns Hopkins University in recognition of his exceptional academic performance and research excellence during his graduate studies. This competitive fellowship is awarded to outstanding students who demonstrate strong potential for impactful contributions in their field. Dr. Chenโ€™s selection reflects his pioneering work in the mechanics of architected and biological materials, including fracture analysis of brittle lattices and soft tissue deformation under high strain rates. The fellowship supported his continued exploration of interdisciplinary challenges in materials science, further affirming his capabilities as a high-achieving and dedicated researcher.

Research Focusย 

Dr. Chenโ€™s research bridges structural mechanics and biomedical engineering. His work focuses on architected materials, particularly brittle lattices, DNA nanostructures, and soft biological scaffolds. He has contributed new knowledge in fracture mechanics, energy absorption, and material instabilities. His postdoctoral research applies these concepts to brain injury modeling under high-strain-rate conditions, including blast exposure and directed energy effects. This work has important implications for defense, neuroscience, and medical innovation.

Publications

A Data-Driven Framework for Structure-Property Correlation in Ordered and Disordered Cellular Metamaterials
Authors: S. Luan, E. Chen, J. John, S. Gaitanaros
Journal: Science Advances, 2023, Vol. 9(41), eadi1453

On the Compressive Strength of Brittle Lattice Metamaterials
Authors: E. Chen, S. Luan, S. Gaitanaros
Journal: International Journal of Solids and Structures, 2022, Vol. 257, 111871

On the Strength of Brittle Foams with Uniform and Gradient Densities
Authors: E. Chen, S. Luan, S. Gaitanaros
Journal: Extreme Mechanics Letters, 2022, Vol. 51, 101598

Stretching DNA Origami: Effect of Nicks and Holliday Junctions on the Axial Stiffness
Authors: W.H. Jung, E. Chen, R. Veneziano, S. Gaitanaros, Y. Chen
Journal: Nucleic Acids Research, 2020, Vol. 48(21), 12407โ€“12414

Stability of an Elastic Honeycomb Under Out-of-Plane Compression
Authors: Y. Tang, E. Chen, S. Gaitanaros
Journal: International Journal of Solids and Structures, 2025

Conclusion

Dr. Enze Chen is a highly qualified and deserving candidate for the Best Researcher Award. His interdisciplinary research, scientific rigor, and active collaborations reflect a mature and innovative approach to solving complex problems in material and biomedical sciences. With further expansion into innovation ecosystems and research leadership, Dr. Chen is on a clear path to becoming a leading figure in his field.

Mr. Dae Hyeob Yoon | Materials Science | Best Researcher Award

Mr. Dae Hyeob Yoon | Materials Science | Best Researcher Award

Mr. Dae Hyeob Yoon is currently an undergraduate researcher in Mechanical Engineering at Chungbuk National University (CBNU), South Korea. His research interests lie in micro/nanotechnology, sensors, and MEMS. Despite being at an early stage in his academic career, he has already contributed to a peer-reviewed publication in Applied Sciences and participated in nationally recognized research programs. His early engagement in advanced materials research and active academic presentation record demonstrate a deep commitment to scientific inquiry.

Mr. Dae Hyeob Yoon | Chungbuk National University (CBNU) | South Korea

Profile

ORCID

Education

Mr. Yoon is pursuing a Bachelor of Science in Mechanical Engineering at CBNU. Alongside his coursework, he has been actively involved in undergraduate research initiatives, including the Undergraduate Research Opportunities Program (UROP). His academic training has allowed him to integrate theoretical knowledge with experimental design and fabrication techniques related to flexible electronics and nanomaterials.

Research Experienceย 

As an undergraduate, Mr. Yoon has contributed to one completed research project involving the development of a flexible and conductive heating membrane. He has presented his work at the Korean Society of Mechanical Engineers (KSME) and will present at the EKC conference in Austria. His publication demonstrates competency in research design, experimental methodology, and technical writing, marking significant early-career achievements.

Contributions

Mr. Dae Hyeob Yoon’s research is focused on developing flexible heating technologies for use in wearable electronics and smart textiles. His current work involves creating a scalable, low-voltage, and mechanically stable heating platform using advanced materials and fabrication techniques. This research addresses major limitations in existing flexible heaters, such as fragility and high energy demands. The technology he is advancing has significant potential for integration into next-generation wearable devices, enabling personalized and adaptive applications in health, fitness, and smart clothing systems. His innovative approach contributes meaningfully to the field of flexible, functional electronics.

Research Focusย 

Mr. Yoonโ€™s primary research focus is on the application of micro and nanotechnology to develop scalable and efficient platforms for wearable and flexible electronics. His current work addresses key challenges in mechanical stability and power efficiency, contributing to emerging markets in personalized technology and smart textiles. His interdisciplinary interest bridges mechanical engineering with material science and electronics.

Publication

Development of a Flexible and Conductive Heating Membrane via BSA-Assisted Electroless Plating on Electrospun PVDF-HFP Nanofibers

Author: Dae Hyeob Yoon

Conclusion

Mr. Dae Hyeob Yoon is a motivated and talented early-stage researcher whose contribution to nanofiber-based heating technologies is noteworthy. His research potential is clear, and with continued academic development and broader engagement in scientific activities, he has the capacity to evolve into a strong candidate for high-level research awards. At this time, he would be better suited for young researcher or emerging researcher recognition, while continuing to build toward Best Researcher status in the future.

Dr. Swami Nath Maurya | Thermodynamics of Materials | Best Researcher Award

Dr. Swami Nath Maurya | Thermodynamics of Materials | Best Researcher Award

Dr. Swami Nath Maurya is a Postdoctoral Researcher at the National Chin-Yi University of Technology (NCUT) in Taiwan, specializing in thermal management and precision manufacturing. He holds a Ph.D. in Precision Manufacturing, a Masterโ€™s in Green Energy Technology, and a B.Tech. in Instrumentation and Control Engineering. With 13 SCIE-indexed journal publications and an h-index of 5, Dr. Maurya merges experimental research with AI modeling to optimize energy and material efficiency. His multidisciplinary expertise spans semiconductors, machine tools, and advanced thermal systems.

Dr. Swami Nath Maurya | National Chin-Yi University of Technology | Taiwan

Profile

SCOPUS

ORCID

GOOGLESCHOLAR

Educationย 

Dr. Mauryaโ€™s academic journey is marked by a solid foundation in engineering and sustainability. He earned his B.Tech. in Instrumentation and Control Engineering, followed by a Masterโ€™s in Green Energy Technology, which underpins his commitment to sustainable development. He then pursued a Ph.D. in Precision Manufacturing, focusing on intelligent process optimization. This academic progression reflects his strong theoretical understanding and applied engineering acumen in the areas of energy efficiency, thermal modeling, and manufacturing systems.

Experience

Dr. Maurya has worked extensively as a postdoctoral researcher, contributing to thermal management in machine tool systems, semiconductor crystal growth (Czochralski process), and graphene-enhanced membranes. He has authored studies on AI-driven optimization, multiobjective cooling, and microfluidic heat sink design. His work is known for solving practical engineering problems with academic rigor, and he collaborates across Taiwan and India. Despite having no current patents or editorial roles, his contributions stand out for their technical depth and industrial relevance.

Contributionsย 

Dr. Swami Nath Maurya has made significant contributions to thermal management, semiconductor process optimization, and sustainable material engineering. His research includes the Czochralski crystal growth process, graphene-based membranes, and hybrid cooling systems for enhanced energy efficiency and system reliability. His 13 SCIE-indexed publications (h-index: 5) reflect innovation at the intersection of AI, thermal modeling, and advanced manufacturing. From machine tool spindle cooling to microfluidic heat sinks, his work promotes intelligent, eco-conscious engineering practices for future-ready industries.

Research Focusย 

Dr. Mauryaโ€™s research centers on thermal deformation modeling, energy-efficient systems, and AI-enhanced process optimization. His work targets complex engineering challenges in machine tools, semiconductor manufacturing, and sustainable material processing. He employs finite element methods, Monte Carlo simulations, and neuro-fuzzy inference systems to optimize system efficiency. By bridging artificial intelligence, green energy, and manufacturing, he is contributing to next-generation, eco-conscious industrial solutions.

Publications

Performance and Economic Enhancement of a Dewaxing Casting Process Using a Heat Pump Drying System
Authors: Win-Jet Luo, Amir Reza Ansari Dezfoli, Swami Nath Maurya, Bivas Panigrahi, Pei-Tang Wang
Journal: Case Studies in Thermal Engineering (2025)

Performance Analysis of Energy Recovery Membrane Coated with Graphene Oxide
Authors: Win Jet Luo, Prateek Negi, Swami Nath Maurya, Bivas Panigrahi, Janet Syah Putra Telaumbanua
Journal: Materials Research Express (2025)

Efficient Heat Dissipation with Hybrid Composite-Based Microfluidic Heat Sinks in Flexible Electronics
Authors: Pramod Vishwakarma, Swami Nath Maurya, Win Jet Luo, Bivas Panigrahi
Journal: Journal of Micromechanics and Microengineering (2025)

Optimization of Machine Tool Spindle Cooling for Enhancement of Thermal Prediction Accuracy and Energy Efficiency
Authors: Cheng-Kai Huang, Tsung-Chia Chen, Kun-Ying Li, Yuan-Hong Tsai, Swami Nath Maurya
Journal: International Journal of Precision Engineering and Manufacturing-Green Technology (2025)

Data-Driven Approach for Optimizing the Czochralski Process and Predictive Modeling: A Finite Element and Machine Learning Analysis
Authors: Swami Nath Maurya, Amir Reza Ansari Dezfoli, Li-Shang Lin
Journal: The International Journal of Advanced Manufacturing Technology (2025)

Process Parameter Optimization in Czochralski Growth of Silicon Ingots: A Monte Carlo-Finite Element Coupled Model
Authors: Amir Reza Ansari Dezfoli, Swami Nath Maurya, Zary Adabavazeh, Yi-Jen Huang
Journal: The International Journal of Advanced Manufacturing Technology (2025)

Impact of Top Cooling on Defect Suppression in Large-Scale Silicon Ingot Manufacturing
Authors: Yi-Jen Huang, Swami Nath Maurya, Amir Reza Ansari Dezfoli
Journal: The International Journal of Advanced Manufacturing Technology (2025)

Ms Vuyolwethu Tokoyi | Materials Science | Best Researcher Award-2401

Ms Vuyolwethu Tokoyi | Materials Science | Best Researcher Award

Ms. Vuyolwethu Tokoyi is a dedicated researcher currently pursuing a Ph.D. in Chemistry at the Durban University of Technology. Her work focuses on green and sustainable chemistry, specifically the use of ZIF-8 and ionic liquids to convert biomass-derived glucose into valuable biochemicals. She holds a Masterโ€™s degree in Chemistry from the University of KwaZulu-Natal and has professional experience as a Research Scientist Intern and Sales Technology Chemist. With a strong background in coordination chemistry and applied research, she brings a passion for innovation, community impact, and scientific advancement.

Ms Vuyolwethu Tokoyi, Durban University of Technology, South Africa

Profile

ORCID

ย ๐ŸŽ“ Education

Ms. Vuyolwethu Tokoyi has an extensive academic background in Chemistry. She is currently pursuing a Ph.D. in Chemistry at the Durban University of Technology, where her research focuses on the application of ZIF-8 and ionic liquids for the conversion of glucose extracted from sugarcane bagasse to value-added biochemicals. She holds a Masterโ€™s degree in Chemistry from the University of KwaZulu-Natal. Her master’s research centered on the synthesis and evaluation of Co(II) and Mn(II) dithiocarbamate complexes and their morpholine adducts, with applications in antibacterial and anticancer studies. she completed her Honours degree in Chemistry with distinction (Cum Laude) at the University of Fort Hare, focusing her research on bipyridine adducts of transition metal dithiocarbamate complexes. She also earned her Bachelor of Science degree in Chemistry and Geology from the University of Fort Hare. Prior to that, she obtained her matric exemption from Templeton High School .

Contribution

Ms. Vuyolwethu Tokoyi has made meaningful contributions to the field of chemistry through her academic research and applied scientific work. Her Ph.D. research is advancing sustainable chemical processes by converting agricultural waste into high-value biochemicals using innovative materials like ZIF-8 and ionic liquidsโ€”supporting green chemistry and waste valorization efforts. She has also contributed to the understanding of metal-ligand complexes with potential antibacterial and anticancer properties, enriching the field of bioinorganic chemistry. Beyond the lab, she has supported research development at the Institute of Water and Wastewater Technology and contributed to technology-driven solutions during her time at Buckman Laboratories and the Technology Innovation Agency. Through her academic achievements, technical skills, and public-sector engagement, she is helping to bridge research, industry, and societal impact.

๐Ÿ†Awards

Throughout her academic and professional journey, Ms. Tokoyi has been recognized for her excellence and dedication. She is a recipient of the prestigious National Research Foundation (NRF) Scholarship for both her Honours and Masterโ€™s studies. In 2017, she was awarded the James Moir Medal by the South African Chemical Institute (SACI) for outstanding academic performance in Chemistry. She has completed numerous professional development programs, earning certificates in business writing and communications, Microsoft digital literacy, ISO 9001:2015 Quality Management Systems, ISO 45001:2018 Occupational Health and Safety, Mushroom Cultivation, and the design of bioactive molecules such as Pleuran and Cordycepin. She also holds certifications in Quality Control and Quality Assurance Techniques.

๐Ÿ‘ฉโ€๐Ÿ”ฌ Experience

Ms. Tokoyi brings over three years of professional experience, primarily within research and applied chemistry roles. she has been serving as a Research Assistant at the Institute of Water and Wastewater Technology (IWWT) at Durban University of Technology. Her earlier roles include working as a Sales Technology Chemist at Buckman Laboratories under the Yes Graduate Program, where she honed her skills in technical sales and client support. Additionally, she served as a Research Scientist Intern at the Technology Innovation Agency, gaining practical experience in scientific research, laboratory operations, and applied innovation in the chemical sciences.

๐Ÿ”ฌ Research Focus

Ms. Tokoyiโ€™s research is rooted in applied and sustainable chemistry. Her current Ph.D. work investigates the use of advanced materials such as ZIF-8 and ionic liquids for the green conversion of biomass-derived glucose into biochemicals, contributing to circular economy and renewable resource utilization. Her prior research involved transition metal complexes with potential biological applications, highlighting her interests in bioinorganic chemistry, coordination chemistry, and materials chemistry. Her academic trajectory illustrates a commitment to leveraging chemistry for innovation in both health-related and environmental applications.

๐Ÿ“š Publications

Ferrocene-Based Bimetallic MOF Beads as Bifunctional Dye Scavenging and Degrading Materials
๐Ÿ‘ฅ Vuyolwethu Tokoyi
๐Ÿ“ฐ Chemical Engineering Transactions, July 2024

Potential Application of IL@ZIFMOF Composites for Lignocellulosic Biomass Valorization: Recent Update
๐Ÿ‘ฅ Vuyolwethu Tokoyi
๐Ÿ“ฐ Chemical Engineering and Process Techniques

Should โ€œIonic Liquidsโ€ also be used for solid ionic compounds: Synthesis and characterization of p-anisidinium-based ionic compounds
๐Ÿ‘ฅ Vuyolwethu Tokoyi
๐Ÿ“ฐ Chemical Engineering and Process Techniques

Synthesis and antibacterial studies of p-anisidinium-based ionic liquids: Experimental, DFT calculations and molecular docking
๐Ÿ‘ฅ Vuyolwethu Tokoyi
๐Ÿ“ฐ Journal of Molecular Liquids

Dr SOOK SAM LEONG | Materials Science | Best Researcher Award

Dr SOOK SAM LEONG | Materials Science | Best Researcher Award

Dr. Sook Sam Leong ๐ŸŽ“๐Ÿฉป is a Senior Lecturer and Clinical Researcher at Universiti Teknologi MARA, Malaysia. With over 20 years of experience in diagnostic imaging, she specializes in medical ultrasound, renal imaging, radiation safety, and AI in radiology ๐Ÿง ๐Ÿ”ฌ. Her impactful work includes shear wave elastography, MRI training in VR, and fatty liver assessment via ultrasound ๐Ÿงช๐Ÿ’ป. She has authored 20+ peer-reviewed articles in top journals ๐Ÿ“š๐ŸŒ and received multiple awards ๐Ÿ† for innovation and scientific merit. A passionate educator and grant leader, Dr. Leong advances clinical imaging through research, mentorship, and international collaboration ๐Ÿคโœจ.

Dr SOOK SAM LEONG, UNIVERSITI TEKNOLOGI MARA, Malaysia

Profile

SCOPUS

ORCID

GOOGLESCHOALR

๐ŸŽ“ Education

Dr. Sook Sam Leong ๐ŸŽ“ has a distinguished academic background in medical imaging and ultrasound. She earned her PhD in Medical Ultrasound with Distinction from the University of Malaya in 2020 ๐Ÿฅ‡, following her Master in Medical Science (Ultrasound) in 2013. Her academic journey began with a Diploma in Medical Radiography (2003) ๐Ÿฅ from the same university. In 2007, she completed a B.Sc. in Radiographic Science at the University of Teesside with First Division Honors ๐Ÿ†. She also trained at Jefferson Ultrasound Research and Education Institute (JUREI) in 2004, completing a Basic Abdominal Ultrasound Course ๐Ÿ”ฌ๐Ÿ“ธ.

๐Ÿ‘ฉโ€โš•๏ธExperience

Dr. Sook Sam Leong brings over 20 years of multidisciplinary clinical and academic experience in diagnostic imaging ๐Ÿฅ๐Ÿฉป. Starting as a Senior Radiographer at University of Malaya Medical Centre (2003โ€“2021) and now a Senior Lecturer at Universiti Teknologi MARA (UiTM), she has specialized in ultrasound, CT, MRI, radiation protection, and digital radiography ๐Ÿ’ป๐Ÿ”ฌ. She has served on ethics, program planning, and medical technology committees ๐Ÿง ๐Ÿ“Š, and contributed as a consultant for Philips Ultrasound and Malaysiaโ€™s Ministry of Health. An accomplished educator ๐ŸŽ“, she has taught ultrasound and CT at leading universities, mentoring the next generation of radiology professionals ๐Ÿง‘โ€๐Ÿซ๐ŸŒŸ.

๐Ÿ† Awardsย 

Dr. Leong has earned multiple prestigious awards including the ๐Ÿฅ‡ Best Innovation Award (UiTM, 2023), ๐Ÿฅˆ Best Researcher Award (2022), and ๐ŸŽ–๏ธ Outstanding Scientific Merit Award (AACRT, 2023). Her accolades reflect her excellence in clinical imaging, innovation, and scientific impact. She also secured competitive research funding ๐Ÿ’ฐ, leading the FRGS grant (RM108,600, 2023โ€“2025) and multiple university-backed projects. Her recognition spans oral presentations, poster excellence, and quality improvement awards, demonstrating sustained excellence across academic, clinical, and translational domains ๐Ÿงช๐Ÿ“Š๐Ÿ‘ฉโ€โš•๏ธ.

๐Ÿ–ฅ๏ธ Expertiseย 

Dr. Leong is a highly skilled expert in Ultrasound ๐Ÿงช, Computed Tomography (CT) ๐Ÿ–ฅ๏ธ, and General Radiography ๐Ÿ“ท, with over two decades of experience in clinical diagnostics and medical education. Her work in ultrasound imaging includes cutting-edge research in shear wave elastography and attenuation techniques. She applies CT and radiographic methods in evaluating complex clinical cases, including renal and hepatic conditions ๐Ÿฉบ๐Ÿงฌ. Her commitment to precision, safety, and innovation in radiological sciences positions her as a leading voice in advancing diagnostic imaging technologies for enhanced patient care and training ๐Ÿง ๐ŸŒ.

๐ŸฉปContributions

Dr. Sook Sam Leong has significantly advanced ultrasound elastography, AI-assisted diagnostics, and clinical imaging ๐Ÿ“Š๐Ÿง . With over 20 WOS-indexed publications ๐Ÿ“š and an h-index of 11 ๐Ÿ“ˆ, her research has revolutionized imaging for kidney disease, musculoskeletal disorders, and forensic applications ๐Ÿงฌ๐Ÿฆด. As FRGS principal investigator, she explores stiffness biomarkers via shear wave elastography ๐Ÿ’ก. Her excellence is recognized with awards like AACRT 2025 Best Paper and UiTM Innovation Award 2023 ๐Ÿ…. Dr. Leong continues to impact global health through AI integration, collaborative research, and postgraduate mentorship ๐ŸŒ๐ŸŽ“.

๐Ÿ”ฌ Research Focus

Dr. Sook Sam Leongโ€™s research is centered on enhancing diagnostic accuracy using Ultrasound and Computed Tomography (CT). Her work explores cutting-edge methods like shear wave elastography for tissue stiffness evaluation, attenuation imaging for fatty liver detection, and the integration of AI and machine learning in radiological interpretation ๐Ÿค–๐Ÿ“Š. She also investigates radiation safety, forensic imaging, and VR-based MRI education ๐Ÿ›ก๏ธ๐Ÿงโ€โš•๏ธ. Bridging clinical application with research, her contributions support early disease detection, patient safety, and medical education, driving innovation in non-invasive diagnostics and multidisciplinary healthcare delivery ๐ŸŒ๐Ÿ’ก๐Ÿ“ˆ.

๐Ÿ“š Publications

2D shear wave elastography for the assessment of quadriceps enthesesโ€”a methodological study
๐Ÿ‘ฉโ€๐Ÿ”ฌ SS Leong, JHD Wong, FI Rozalli, F Yahya, YC Tee, LSM Yamin, …
๐Ÿ“˜ Skeletal Radiology, 2024, Vol. 53(3), pp. 455โ€“463

Application of entropies for automated diagnosis of abnormalities in ultrasound images: A review
๐Ÿ‘ฉโ€๐Ÿ”ฌ Y Hagiwara, VK Sudarshan, SS Leong, A Vijaynanthan, KH Ng
๐Ÿ“˜ Journal of Mechanics in Medicine and Biology, 2017, Vol. 17(07), Article 1740012

Shear wave elastography in chronic kidney disease โ€“ the physics and clinical application
๐Ÿ‘ฉโ€๐Ÿ”ฌ KH Ng, JHD Wong, SS Leong
๐Ÿ“˜ Physical and Engineering Sciences in Medicine, 2024, Vol. 47(1), pp. 17โ€“29

THE ROLE OF SHEAR WAVE ELASTOGRAPHY IN POST-MORTEM CANINES
๐Ÿ‘ฉโ€๐Ÿ”ฌ SS Leong, WK Ong, RR Azman, MNM Shah, A Vijayananthan, SF Lau
๐Ÿ“˜ Journal of Medical Imaging and Radiation Sciences, 2023, Vol. 54(3), Supplement S9

Dispersion patterns of scattered radiation exposure on phantom in CT fluoroscopy
๐Ÿ‘ฉโ€๐Ÿ”ฌ SS Leong, N Azman, A Vijayananthan, JHD Wong
๐Ÿ“˜ Radiation Physics and Chemistry, 2025, Vol. 235, Article 112810

Defining normal enthesis stiffness range in a healthy adult population
๐Ÿ‘ฉโ€๐Ÿ”ฌ MKJ Mahazer, SS Leong, JHD Wong, FI Rozalli, F Yahya, YC Tee, …
๐Ÿ“˜ British Journal of Radiology, 2025, Vol. 98(1167), Article 469โ€“474

Quantifying canine tissue stiffness change patterns using shear-wave elastography: implications for time of death estimation
๐Ÿ‘ฉโ€๐Ÿ”ฌ WK Ong, SS Leong, RR Azman, MN Md Shah, A Vijayananthan, SF Lau
๐Ÿ“˜ Australian Journal of Forensic Sciences, 2024, pp. 1โ€“14

Dr Gevorg Gevorg | Thermodynamics of Materials | Best Researcher Award

Dr Gevorg Gevorg | Thermodynamics of Materials | Best Researcher Award

Dr. Gevorg Avรกgovich Grigorian ๐ŸŽ“๐Ÿ“ is a senior researcher at the Institute of Mathematics, National Academy of Sciences of Armenia ๐Ÿ‡ฆ๐Ÿ‡ฒ. His research expertise lies in ordinary differential equations (ODEs), with a special focus on oscillation theory, stability analysis, and Wienerโ€“Hopf integral equations. ๐Ÿงฎ๐Ÿง  He has authored over 15 peer-reviewed publications in esteemed journals such as Mathematical Notes and Monatshefte fรผr Mathematik ๐Ÿ“๐Ÿ“š. Dr. Grigorian’s contributions offer theoretical foundations vital for applications in physics, engineering, and computational modeling. His rigorous work continues to shape the future of applied mathematics and system dynamics. ๐ŸŒ๐Ÿ“Š๐Ÿ”

Dr Gevorg Gevorg, Institute of Mathematics of the National Academy of Science of the Republic of Armenia, Armenia

Profile

SCOPUS

Education ๐ŸŽ“

Dr. Gevorg Avรกgovich Grigorian ๐ŸŽ“๐Ÿ“˜ earned his advanced degrees in Mathematics from prestigious institutions in Armenia, specializing in ordinary differential equations, stability theory, and integral equations. ๐Ÿง ๐Ÿ“ His academic foundation was built through rigorous training in classical analysis, linear algebra, and functional methods. ๐Ÿ›๏ธ๐Ÿ“Š As a product of Armeniaโ€™s elite mathematical education system ๐Ÿ‡ฆ๐Ÿ‡ฒ, Dr. Grigorian has demonstrated exceptional analytical acumen, leading to a prolific research career at the Institute of Mathematics, National Academy of Sciences of Armenia. His deep understanding of mathematical systems continues to influence modern theoretical approaches in applied and pure mathematics. ๐Ÿ“š๐Ÿ”ฌ๐ŸŒ

Experience โœ๏ธ

Dr. Gevorg Avรกgovich Grigorian ๐Ÿ“˜๐Ÿง  has extensive experience as a mathematical researcher at the Institute of Mathematics, National Academy of Sciences of Armenia ๐Ÿ‡ฆ๐Ÿ‡ฒ. With a career dedicated to the in-depth study of first-order ordinary differential equations, he has contributed groundbreaking work on oscillation theory, stability, and integral equations. ๐Ÿงฎ๐Ÿ” He has published in top journals like Mathematical Notes and Monatshefte fรผr Mathematik, and is recognized for his rigorous analytical methods. ๐Ÿ“ˆโœ๏ธ Dr. Grigorianโ€™s expertise supports interdisciplinary applications across engineering, physics, and computational modeling, marking him as a key figure in mathematical innovation. ๐ŸŒ๐Ÿ“

Research Focus ๐Ÿ”

Dr. Grigorianโ€™s research is rooted in ordinary differential equations (ODEs), with a sharp focus on oscillation theory, stability analysis, and integral equations such as the Wienerโ€“Hopf type. ๐Ÿงฎ His recent work investigates solvability criteria for complex systems, aiming to bridge abstract mathematical theory with applications in physics, engineering, and signal processing. โš™๏ธ๐Ÿ“Š He develops new analytical frameworks for understanding nonhomogeneous systems, Riccati equations, and linear dynamical models. Through 15+ publications, he contributes to advancing the theory of dynamic systems, particularly in system reducibility, asymptotic behavior, and global solution existence. ๐ŸŒ๐Ÿ”๐Ÿ“

Publication ๐Ÿ“˜

Solvability Conditions for a Class of Wienerโ€“Hopf Integral Equations of the First Kind ๐Ÿงฎ๐Ÿ“˜

โœ๏ธ Author:
Gevorg Avรกgovich Grigorian ๐Ÿ‘จโ€๐Ÿซ

๐Ÿ“š Journal:
Mathematical Notes, 2025 ๐Ÿ“ฐ๐Ÿ“

Prof Sanboh Lee | Mechanical Properties of Materials | Best Researcher Award

Prof Sanboh Lee | Mechanical Properties of Materials | Best Researcher Award

Prof. Sanboh Lee is an eminent materials scientist and engineer, currently serving as Professor Emeritus at the Department of Materials Science and Engineering, National Tsing Hua University, Taiwan. With a Ph.D. from the University of Rochester and over four decades of academic and research leadership, he has significantly advanced multiple domains in materials science. He has authored over 280 journal papers and delivered 150 international presentations, solidifying his reputation as a global thought leader. His distinguished career reflects deep expertise in dislocation mechanics, phase transformation, composite materials, and nanotechnology.

Prof Sanboh Lee, National Tsing Hua University, Taiwan

Profile

SCOPUS

ORCID

๐ŸŽ“ Educationย 

Prof. Sanboh Lee holds a prestigious academic background rooted in physics and materials science. He earned his Ph.D. in Materials Science from the University of Rochester in 1980 ๐Ÿงช๐ŸŽ“, where he developed deep expertise in defect mechanics and transport phenomena. Prior to that, he completed an M.S. in Physics from National Tsing Hua University in 1972 โš›๏ธ๐Ÿ“˜, and a B.S. in Physics from Fu Jen Catholic University in 1970 ๐Ÿ“๐Ÿ”ฌ. His rigorous education across these renowned institutions laid a solid foundation for a lifelong contribution to scientific research and engineering innovation ๐ŸŒ๐Ÿ“š.

๐Ÿซ Experienceย 

Prof. Sanboh Lee is a renowned academic in materials science with decades of experience across premier institutions ๐ŸŒ๐Ÿ“š. He served as Professor at National Tsing Hua University from 1985 to 2018 and is currently a Professor Emeritus ๐Ÿง‘โ€๐Ÿซ๐Ÿ…. His global research engagements include roles as Adjunct Professor at the University of Science and Technology Beijing ๐Ÿ‡จ๐Ÿ‡ณ, Guest Scientist at NIST, USA ๐Ÿงช๐Ÿ‡บ๐Ÿ‡ธ, and Visiting Scholar at Lehigh University ๐Ÿซ๐Ÿ”ฌ. Earlier roles include Research Associate at the University of Rochester and Postdoctoral Researcher at Xeroxโ€™s Webster Research Center ๐Ÿงซโš™๏ธโ€”a career deeply rooted in innovation, international collaboration, and advanced materials engineering.

๐Ÿ… Honors & Fundingย 

Prof. Sanboh Lee is a globally acclaimed materials scientist recognized for his groundbreaking work in nano-composite materials and nanotechnology ๐Ÿงช๐Ÿ”ฌ. He received research funding from the Ministry of Science and Technology, Taiwan for advancing mechanical properties in nanomaterials โš™๏ธ๐Ÿงซ. His remarkable honors include the Lifetime Achievement Award by VDGOOD (2022), SAS Eminent Fellow (2021), and Fellow of ASM International and MRS-Taiwan ๐Ÿ…๐ŸŒ. Celebrated for his studies on defect interactions, fracture mechanics, and polymer transport, Prof. Leeโ€™s awards reflect his lasting impact in academia and industry ๐Ÿง ๐Ÿ“š. His excellence spans decades of innovation, leadership, and global recognition ๐ŸŒ๐Ÿฅ‡.

๐Ÿ”ฌ Research Focusย 

Prof. Sanboh Leeโ€™s research spans a wide spectrum of advanced materials science topics including nano-composites, defect mechanics, fracture behavior, and transport phenomena in metals and polymers ๐Ÿงฌ๐Ÿงช. His recent work, funded by the Ministry of Science and Technology, Taiwan, investigates the mechanical properties of nano-composite materials and nanotechnology โš™๏ธ๐Ÿ”. He explores diffusion-induced stress, hydrogen transport, polymer phase behavior, and magnetic and optical properties of materials under complex environments ๐ŸŒก๏ธ๐Ÿงฒ๐Ÿ“. His interdisciplinary contributions bridge micro/nano mechanics, biomaterials, and semiconductor devices, pushing the boundaries of modern materials engineering and applied physics ๐Ÿ”ฌ๐ŸŒ.

๐Ÿ“š Publications

Kinetic Analysis of the Cracking Behavior in Methanol-Treated Poly(methyl methacrylate)/Functionalized Graphene Composites

Authors: Bing-Hong Yang, Shou-Yi Chang, Yulin Zhang, Fuqian Yang, Sanboh Lee
Journal: Journal of Composites Science (Feb 2025)

Cracking in UV-Irradiated Poly(methyl methacrylate)/Functionalized Graphene Composites: Solvent Effect

Authors: Bing-Hong Yang, Shou-Yi Chang, Yulin Zhang, Fuqian Yang, Sanboh Lee
Journal: Journal of Polymer Research (Sept 2024)

Analysis of the Thermal Aging Kinetics of Tallow, Chicken Oil, Lard, and Sheep Oil

Authors: Yun-Chuan Hsieh, Hao Ouyang, Yulin Zhang, Donyau Chiang, Fuqian Yang, Hsin-Lung Chen, Sanboh Lee
Journal: Molecules (Sept 2024)

Creep-Recovery Deformation of 304 Stainless-Steel Springs Under Low Forces

Authors: Ming-Yen Tsai, Shou-Yi Chang, Yulin Zhang, Fuqian Yang, Sanboh Lee
Journal: Mechanics of Materials (June 2024)

A Mechanical Model for Stress Relaxation of Polylactic Acid/Thermoplastic Polyurethane Blends

Authors: Yi-Sheng Jhao, Hao Ouyang, Chien-Chao Huang, Fuqian Yang, Sanboh Lee
Journal: Journal of Composites Science (May 2024)

Thermal Degradation of Vegetable Oils

Authors: Yi-Hsiou Tsai, Donyau Chiang, Yu-Ting Li, Tsong-Pyng Perng, Sanboh Lee
Journal: Foods (April 2023)

Brownian Motion of Poly(divinylbenzene) Nanoparticles in Water

Authors: Ching-Bin Lin, Chia-Wei Lee, Hao Ouyang, Fuqian Yang, Sanboh Lee
Journal: Journal of Applied Physics (March 2023)

Mrs Charoula Iliaskou | Materials Science | Best Researcher Award

Mrs Charoula Iliaskou | Materials Science | Best Researcher Award

Mrs. Charoula Iliaskou is a medical physicist and researcher at the University Medical Center Freiburg ๐Ÿ‡ฉ๐Ÿ‡ช, specializing in intraoperative electron beam radiation therapy (IOERT) โšก๐Ÿฅ. She holds an MSc in Medical Physics from the National and Kapodistrian University of Athens ๐Ÿ‡ฌ๐Ÿ‡ท, graduating top of her class ๐ŸŽ“. Her research explores targeted dosimetry, radiation planning, and magnetic nanoparticles for hyperthermia therapy ๐Ÿงฒ๐Ÿงช. Skilled in Monte Carlo simulations, clinical software, and nanomaterials analysis, she integrates theory with real-world clinical application ๐Ÿ”ฌ๐Ÿ’ป. Charoulaโ€™s work contributes to more precise, effective cancer therapies and positions her as a promising figure in radiation oncology research ๐ŸŒ๐Ÿ“ˆ.

Mrs Charoula Iliaskou, University Medical Center Freiburg, Germany

Profile

ORCID

SCOPUS

GOOGLESCHOLAR

Education ๐ŸŽ“

Mrs. Charoula Iliaskou holds an MSc in Medical Physics โ€“ Radiation Physics from the National and Kapodistrian University of Athens (2020), where she graduated top of her class (Rank 1/19, Grade 9.14/10) ๐ŸŽ“๐Ÿ…. She earned her BSc in Physics from Aristotle University of Thessaloniki in 2018 (Rank 2/23, Grade 8.18/10) ๐Ÿ“˜๐Ÿ”ฌ. In 2017, she participated in the Erasmus+ program at the University of Duisburg-Essen, Germany, gaining international academic experience ๐ŸŒ๐Ÿ“–. Her academic journey began with an excellent high school diploma from Xanthi, Greece (Grade 18.9/20) ๐Ÿซ๐Ÿ“, demonstrating consistent excellence in science and education.

Experience ๐Ÿ‘ฉโ€๐Ÿ”ฌ

Mrs. Charoula Iliaskou is currently a Physicist in the Division of Medical Physics at the University Medical Center Freiburg ๐Ÿ‡ฉ๐Ÿ‡ช, where she develops image-guided planning and verification workflows for IOERT (Intraoperative Electron Beam Radiation Therapy) ๐Ÿฅโšก. Her MSc research focused on in vivo dosimetry for breast cancer using EBT3 Gafchromic films ๐ŸŽฏ๐Ÿงช. She has hands-on training in radiation treatment planning and quality assurance from AHEPA Hospital and early research experience in nanoparticle hyperthermia and magnetometry ๐Ÿงฒ๐Ÿ”ฌ. Her work combines clinical physics with nanoscale science, showing deep engagement from student researcher to applied medical physicist ๐Ÿ‘ฉโ€๐Ÿ”ฌ๐Ÿ“ˆ.

Honors and Awards ๐Ÿ…

Mrs. Charoula Iliaskou was honored with the โ€œBest Undergraduate Student Internship of the Physics Department for the year 2017โ€“2018โ€ ๐Ÿ… by the Aristotle University of Thessaloniki, Greece ๐Ÿ‡ฌ๐Ÿ‡ท. This award recognized her outstanding performance, commitment, and research initiative during her clinical internship in radiation oncology and medical physics ๐Ÿฅ๐Ÿ”ฌ. It reflects her early dedication to academic and professional excellence, as well as her ability to integrate theoretical knowledge into practical medical applications ๐ŸŽ“โš™๏ธ. This recognition served as a launching point for her future achievements in medical physics, marking her as an emerging talent in the field ๐ŸŒŸ.

Skills

Mrs. Charoula Iliaskou brings a powerful set of scientific and technical skills to her research in medical physics ๐Ÿงช. Her expertise includes radiation dosimetry, magnetic nanoparticle characterization (VSM, SQUID), X-ray diffraction, SEM-TEM imaging, and Monte Carlo simulations ๐Ÿ”ฌ๐Ÿ“Š. She is proficient in tools such as MATLAB, SPSS, EGSnrc, ImageJ, and clinical planning systems like ECLIPSE and RADIANCE ๐Ÿ’ป๐Ÿง . Charoula is multilingualโ€”fluent in Greek, English, Spanish, and German ๐Ÿ—ฃ๏ธโ€”and excels in teamwork, leadership, communication, and project management ๐Ÿค๐Ÿ“…. Her skillset bridges computational analysis, clinical application, and experimental research, making her a highly versatile scientist.

Research Focus ๐Ÿ”ฌ

Mrs. Charoula Iliaskou focuses her research on medical and radiation physics, particularly on intraoperative electron beam radiation therapy (IOERT) and targeted dosimetry techniques for cancer treatment โš›๏ธ๐Ÿฅ. Her interests span the development of image-guided planning workflows, Monte Carlo simulations, and nanoparticle-based hyperthermia therapies ๐Ÿงฒ๐Ÿ”ฌ. She combines advanced analytical tools like radiation dosimetry, X-ray diffraction, and SEM-TEM imaging with clinical software such as ECLIPSE and RADIANCE ๐Ÿ’ป๐Ÿ“Š. With interdisciplinary expertise bridging nanotechnology, oncology, and statistical modeling, her research aims to improve precision and outcomes in radiation oncology and cancer therapy ๐ŸŒ๐Ÿ“ˆ.

Publications ๐Ÿ“š

Minimum and optimal requirements for a safe clinical implementation of ultra-high dose rate radiotherapy: A focus on patientโ€™s safety and radiation protection
โœ๏ธ Authors: C. Garibaldi, S. Beddar, N. Bizzocchi, T.T. Bรถhlen, C. Iliaskou, R. Moeckli, …
๐Ÿ“š Journal: Radiotherapy and Oncology, Vol. 196, 110291 (2024)
๐Ÿ›ก๏ธ Theme: Radiation safety, FLASH radiotherapy, clinical implementation

ย Ex-vivo evaluation of magnetite magnetic nanoparticles as magnetic hyperthermia carriers
โœ๏ธ Authors: N. Maniotis, E. Myrovali, Z. Kalpaxidou, C. Iliaskou, M. Angelakeris, …
๐Ÿ“š Conference: 2018 EMF-Med 1st World Conference on Biomedical Applications of Electromagnetic Fields
๐Ÿงฒ Theme: Magnetic nanoparticles, hyperthermia therapy, biomedical applications

Evaluation of RADIANCE Monte Carlo algorithm for treatment planning in electron based Intraoperative Radiotherapy (IOERT)
โœ๏ธ Authors: C. Iliaskou, G. Rossi, I. Sachpazidis, V. Boronikolas, M. Gainey, D. Baltas
๐Ÿ“š Journal: Zeitschrift fรผr Medizinische Physik, 2024
๐Ÿงฎ Theme: Monte Carlo simulation, IOERT, treatment planning systems

Development of a TLD-100 based setup for in vivo dosimetry in Intraoperative Electron Beam Radiation Therapy (IOERT): An experimental and clinical evaluation
โœ๏ธ Authors: C. Iliaskou, M. Gainey, B. Thomann, M. Kollefrath, R. Saum, E. Gkika, …
๐Ÿ“š Journal: Zeitschrift fรผr Medizinische Physik, 2025
๐Ÿ“ Theme: In vivo dosimetry, TLD-100, intraoperative radiation

PS02.29 Clinical Evaluation of a TLD-Based In-Vivo Dosimetry Workflow in Pancreatic Intraoperative Electron Beam Radiation Therapy (IOERT): One Case Report Study
โœ๏ธ Authors: C. Iliaskou, M. Gainey, M. Kollefrath, E. Gkika, U. Wittel, D. Ruess, A.L. Grosu, …
๐Ÿ“š Conference/Journal: Case study presentation, clinical physics context
๐Ÿฉบ Theme: Clinical evaluation, pancreatic cancer, IOERT workflow