Ann Kurian | Biomaterials | Best Researcher Award

Ms. Ann Kurian | Biomaterials | Best Researcher Award

Ann Anu Kurian is a biomedical researcher with over seven years of experience specializing in cellular biology and RNA-based gene delivery. She holds an MS in Biomedical Science from Morehouse School of Medicine and a BTech in Biotechnology from Lovely Professional University. Currently an Associate Researcher II and Lab Manager at the Icahn School of Medicine at Mount Sinai, her work focuses on cardiac and skeletal muscle regeneration using modified mRNA technologies. She has contributed to multiple peer-reviewed publications and has been recognized with several academic honors, including a Presidential Scholarship and research presentation awards.

Ms.Ann Kurian , Icahn school of medicine, United States.

Profile

GOOGLESCHOLAR

SCOPUS

πŸŽ“ Education

Ann Anu Kurian holds a Master of Science in Biomedical Science from Morehouse School of Medicine in Atlanta, Georgia, completed between August 2015 and May 2017. She also earned a Bachelor of Technology in Biotechnology from Lovely Professional University in India, where she studied from August 2009 to May 2013.

🌟 Experience

With over seven years of research experience, Ann currently serves as an Associate Researcher II and Research Lab Manager at the Icahn School of Medicine at Mount Sinai in New York. Since November 2023, she has been working in the Gregorio Laboratory, conducting research focused on understanding the components and molecular mechanisms that regulate actin architecture in cardiac and skeletal muscle during both normal development and disease. Prior to this, she held a similar role in the Zangi Laboratory from August 2017 to November 2023, where she led projects utilizing modified mRNA to improve cardiac outcomes post-injury and managed various aspects of laboratory operations. Her professional journey began in India at VWR International from January 2014 to August 2015, where she supported chemical projects, maintained product data in SAP, and enhanced product descriptions.

πŸ… Awards and Honors

Ann has been recognized for her academic and research achievements, receiving a Presidential Scholarship from Morehouse School of Medicine in 2017. The same year, she earned a travel award to attend the Georgia Academy of Science annual meeting. She also presented her research at several prestigious conferences, including the Ninth AACR Conference on The Science of Cancer Health Disparities, the Curtis L. Parker Student Research Symposium, and the Georgia Academy of Science annual meeting.

πŸ“–Skill

Ann is skilled in a wide range of technical and laboratory techniques. Her expertise includes molecular biology methods such as PCR, gel electrophoresis, cloning, RNA and DNA extraction, modified mRNA production, and LNP characterization. She is proficient in cell culture techniques, cardiomyocyte isolation, tissue sectioning, histological staining, and confocal microscopy. Her experience also includes data analysis, IVIS imaging, and statistical evaluation. She has strong capabilities in animal handling and laboratory management, including procurement, equipment maintenance, and regulatory compliance.

πŸ”¬ Research Focus

Ann’s research centers on cellular biology and RNA-based gene delivery systems, particularly in the context of cardiac and skeletal muscle biology. Her work has explored the use of modified mRNA technologies to induce gene expression for therapeutic regeneration following cardiac injury. Her contributions to the field are reflected in numerous peer-reviewed publications, addressing areas such as cardiomyocyte proliferation, ischemic injury, cardiac regeneration, and mRNA optimization.

πŸ“˜ Publications

Pkm2 regulates cardiomyocyte cell cycle and promotes cardiac regeneration
Authors: A Magadum, N Singh, AA Kurian, I Munir, T Mehmood, K Brown, …
Year: 2020
Journal: Circulation (Volume 141, Issue 15, Pages 1249–1265)

Altering sphingolipid metabolism attenuates cell death and inflammatory response after myocardial infarction
Authors: Y Hadas, AS Vincek, E Youssef, MM Ε»ak, E Chepurko, N Sultana, …
Year: 2020
Journal: Circulation (Volume 141, Issue 11, Pages 916–930)

Ablation of a single N-glycosylation site in human FSTL 1 induces cardiomyocyte proliferation and cardiac regeneration
Authors: A Magadum, N Singh, AA Kurian, MTK Sharkar, E Chepurko, L Zangi
Year: 2018
Journal: Molecular Therapy – Nucleic Acids (Volume 13, Pages 133–143)

Optimization of 5β€² untranslated region of modified mRNA for use in cardiac or hepatic ischemic injury
Authors: N Sultana, Y Hadas, MTK Sharkar, K Kaur, A Magadum, AA Kurian, …
Year: 2020
Journal: Molecular Therapy Methods & Clinical Development (Volume 17, Pages 622–633)

Direct reprogramming induces vascular regeneration post muscle ischemic injury
Authors: K Kaur, Y Hadas, AA Kurian, MM Ε»ak, J Yoo, A Mahmood, H Girard, …
Year: (Year not provided)
Journal: Molecular Therapy (Volume 29, Issue 10, Pages 3042–3058)

Mr Qiusheng Shi | Materials Science | Best Researcher Award

Mr Qiusheng Shi | Materials Science | Best Researcher Award

Mr. Qiusheng Shi is a dedicated postgraduate researcher at the College of Optoelectronics Engineering, Chongqing University πŸ“‘. His research focuses on smart materials, point defects, and doping mechanisms to enhance photoelectric and mechanical properties of materials for flexible sensor applications πŸ€–. His work on pentagonal-BCN materials contributes to next-generation optoelectronic devices and energy-efficient technologies ⚑. He has published in the Journal of Solid State Chemistry, demonstrating his commitment to scientific innovation πŸ“–. His expertise in materials characterization, nanotechnology, and optoelectronics positions him as a rising talent in smart material engineering 🌍.

Mr Qiusheng Shi, College of Optoelectronics Engineering, Chongqing University, China

Profile

ORCID

SCOPUS

Education πŸŽ“

Mr. Qiusheng Shi is a graduate student at the School of Optical and Electronic Engineering, Chongqing University πŸ“‘. His research focuses on smart materials and structures, with applications in flexible electronics, sensors, and optoelectronic devices πŸ€–. He specializes in material doping, point defects, and their influence on photoelectric and mechanical properties ⚑. His academic journey has equipped him with advanced knowledge in material science, nanotechnology, and optoelectronics πŸ”¬. As an emerging researcher, he is committed to developing next-generation energy-efficient and intelligent material systems for industrial and technological advancements πŸ†.

Research and Innovations πŸ”¬

Mr. Shi’s research primarily explores doping and point defects to regulate the photoelectric and mechanical properties of pentagonal-BCN. His completed research includes:
βœ… Investigation of smart materials for flexible sensor applications πŸ€–
βœ… Study of photoelectric properties in doped materials πŸ”†
βœ… Contributions to the understanding of point defects in BCN-based materials πŸ—οΈ
βœ… Advancement of mechanical property optimization through nanostructuring βš™οΈ

His work supports the next-generation electronic and optoelectronic materials, contributing to flexible and energy-efficient device applications.

Contributions πŸ›οΈ

While Mr. Shi is an early-career researcher, his work has significant implications for flexible electronics and material applications. His contributions include:
πŸ“‘ Development of smart materials for sensor technologies
πŸ“– Enhancing understanding of BCN-based material defects
πŸ› οΈ Potential applications in energy-efficient and flexible electronics

His research lays a foundation for future innovations in material science and engineering.

Research Focus πŸ”¬

Mr. Qiusheng Shi’s research focuses on smart materials and structures, particularly in doping and point defects to regulate the photoelectric and mechanical properties of pentagonal-BCN πŸ—οΈ. His work explores novel material modifications to enhance optical, electrical, and mechanical performance for next-generation flexible sensors and optoelectronic devices πŸ“‘. Through nanostructuring and material engineering, he aims to develop energy-efficient, highly durable smart materials πŸ”†. His published work in the Journal of Solid State Chemistry highlights significant advancements in material optimization for flexible electronics, wearables, and intelligent material systems, contributing to the future of optoelectronic applications πŸ€–.

Notable Publication πŸ“š

Prof. Dr Abdelkhalek kammouni | Materials Science | Best Researcher Award

Prof. Dr Abdelkhalek kammouni | Materials Science | Best Researcher Award

Prof. Dr. Abdelkhalek Kammouni is a leading researcher in materials science, nanotechnology, and sustainable engineering. Currently a Professor of Higher Education at Moulay IsmaΓ―l University, Morocco, he holds a Ph.D. in Materials Science from Paul CΓ©zanne University, France (2007) πŸŽ“. His expertise includes thermoelectric materials, composite materials, and advanced thin films. He has pioneered fire-resistant bio-based composites, non-destructive testing techniques, and energy-efficient material solutions βš‘πŸ—οΈ. With numerous SCI-indexed publications, international collaborations, and leadership in materials research, Prof. Kammouni’s innovations contribute to green energy, infrastructure safety, and sustainable material development πŸŒπŸ”¬. His impactful research makes him a top contender for the Best Researcher Award πŸ….

Prof. Dr Abdelkhalek kammouni, Faculty of Sciences, Morocco

Profile

GOOGLESCHOLAR

SCOPUS

πŸŽ“ EducationΒ 

Prof. Dr. Abdelkhalek Kammouni has an extensive academic background in materials science, metallurgy, and computational modeling. He earned his Doctorate in Materials Science (2007) from Paul CΓ©zanne University, France, focusing on precipitation mechanisms and microstructural stability in TRIP steels πŸ—οΈ. In 2016, he received his Habilitation Universitaire in metallic and composite materials for environmental applications 🌱. He also holds a Master’s in Computer Science from INP Toulouse, a DiplΓ΄me d’Etudes Approfondies (DEA) in Processes and Materials from Perpignan University, and was appointed Professor of Higher Education in 2022 πŸ‘¨β€πŸ«. His diverse expertise bridges materials engineering, nanotechnology, and sustainability πŸ”¬βš‘.

πŸ‘¨β€πŸ« ExperienceΒ 

Prof. Dr. Abdelkhalek Kammouni is a permanent professor and researcher at Moulay IsmaΓ―l University, MeknΓ¨s, specializing in materials science, metallurgy, and nanotechnology πŸ—οΈ. From 2011-2017, he served as an Assistant Professor at the Γ‰cole Nationale SupΓ©rieure d’Arts et MΓ©tiers, Casablanca 🏫. He has conducted scientific research stays at IM2NP Marseille, INSA Lyon, and ENSCI Limoges (France) πŸ‡«πŸ‡·. His postdoctoral research at CP2M, France, focused on the influence of galvanization on bainitic steels. He has worked as an expert consultant for Sollac MΓ©diterranΓ©e, optimizing precipitation and microstructural properties of steels. His expertise bridges academia, industry, and advanced material characterization πŸ”¬βš‘.

πŸ“‘Research ProjectsΒ 

🌍 International Projects:
βœ… TOUBKAL Project (2025-2027, 2018-2021) – Development of bio-based fire-resistant composites in collaboration with CNRS France πŸ”₯.
βœ… Residential Research School (2024) – Research on functional nanostructured materials πŸ—οΈ.
βœ… FINCOM Project (2023, 2015) – Characterization of nanostructured materials ⚑.

πŸ›οΈ National Projects:
βœ… URL-CNRST (2020-2024) – Research on advanced materials 🏭.
βœ… UMI Project (2018-2022) – Thermal energy recycling for sustainability 🌱.

πŸ”¬ Research Focus

Prof. Dr. Abdelkhalek KammouniΒ research primarily focuses on materials characterization, microstructural analysis, and composite materials. Their work includes TEM-based local carbon concentration measurements in retained austenite, mechanical and thermal properties of natural fiber composites, and COβ‚‚ sensing using CuO/spinel thin films. They also study thermoelectric properties of Mg-Ag-Sb thin films, microalloyed steels, and historical lime mortars for self-healing properties. Their expertise spans nanomaterials, metallurgy, and environmental materials, contributing to advanced materials science for construction, aerospace, and energy applications. πŸ—οΈπŸ”¬βš‘πŸŒΏ

πŸ“š PublicationsΒ 

πŸ“– A methodology suitable for TEM local measurements of carbon concentration in retained austenite
πŸ‘¨β€πŸ”¬ Authors: A. Kammouni, W. Saikaly, M. Dumont, C. Marteau, X. Bano, A. CharaΓ―
πŸ“° Journal: Materials Characterization πŸ—οΈ (2008)

πŸ“– Effect of surface modification on morphological, mechanical, and thermal conductivity of hemp fiber: Characterization of the interface of hemp–Polyurethane composite
πŸ‘¨β€πŸ”¬ Authors: S. Sair, A. Oushabi, A. Kammouni, O. Tanane, Y. Abboud, H. F. Oudrhiri
πŸ“° Journal: Case Studies in Construction Materials 🏑 (2017)

πŸ“– COβ‚‚ sensing characteristics of CuO/Spinel thin films deposited on micro-heater
πŸ‘¨β€πŸ”¬ Authors: P. T. F. Oudrhiri-Hassani, L. Presmanes, A. Barnabe, A. Kammouni
πŸ“° Journal: Journal of Materials and Environmental Science 🌍 (2015)

πŸ“– Seebeck coefficient variations of Ξ±-MgAgSb in crystalline Mg-Ag-Sb thin films
πŸ‘¨β€πŸ”¬ Authors: N. Oueldna, A. Portavoce, M. Bertoglio, M. Descoins, A. Kammouni
πŸ“° Journal: Journal of Alloys and Compounds ⚑ (2023)

πŸ“– Investigation of historical lime mortars from the Chellah Mosque (Morocco): Mineralogical characterization and self-healing mechanisms of micro-cracks
πŸ‘¨β€πŸ”¬ Authors: N. Oulida, A. Kammouni, T. Lamhasni, M. Haddad, M. Ziani, S. A. Lyazidi
πŸ“° Journal: Construction and Building Materials πŸ›οΈ (2023)

His work spans nanomaterials, thermoelectrics, heritage conservation, and sustainable composites πŸ”₯🌱.

Prof Yongfeng Li | Biomaterials | Best Researcher Award

Prof Yongfeng Li | Biomaterials | Best Researcher Award

Prof Yongfeng Li, Forestry College of Shandong Agricultural University, China

Prof. Yongfeng Li, a leading researcher in Wood Science and Technology, holds a Ph.D. from Northeast Forestry University, China. With international experience as a visiting scholar at the University of Maryland and FPInnovations in Canada, he excels in polymer-wood composites, nanotechnology, and sustainable materials. Prof. Li’s groundbreaking research is published in high-impact journals like Nature and ACS Applied Nano Materials. He holds numerous patents, including innovative wood treatments, and has received prestigious awards such as the Shenzong Qi Wood Award. As a project leader and editorial board member, he combines academic excellence with impactful innovation. πŸŒ±πŸ†πŸ“š.

Publication Profile

SCOPUS

ORCID

Academic and Experience πŸŽ“

Prof. Yongfeng Li has a distinguished educational background and professional experience in Wood Science and Technology. He earned his Ph.D. (2008-2012), Master’s (2005-2008), and Bachelor’s (2001-2005) degrees from Northeast Forestry University, China. Prof. Li expanded his expertise through international exposure as a Visiting Scholar at the University of Maryland (2016-2017) in Material Science and Engineering and at FPInnovations in Canada (2011-2012), focusing on wood modification. This blend of advanced education and global experience underpins his leadership in wood science, sustainable materials, and innovative research, cementing his reputation as a prominent figure in his field. πŸŒ³πŸ”¬πŸŒ

Accolades and Recognition πŸ₯‡

Prof. Yongfeng Li has received numerous prestigious awards and honors throughout his illustrious career. 🌟 In 2019, he became an Editorial Board Member of Advances in Materials. πŸ“˜ In 2018, he earned third prize for β€œNational Ecological Civilization & E-Teaching Achievements” 🌍 and was named β€œPacemaker to Young Post Expert” at Shandong Agricultural University. πŸ… His first prize in the β€œMicro-Lecture Competition for Agriculture and Forestry Majors” followed in the same year. πŸ“š Earlier, he received honors like the Jiangsu High-Level Talent Plan (2015) πŸ’Ό and the β€œSHENZONGQI” Wood Science Paper Prize (2012). πŸ“œ His academic journey is decorated with multiple scholarships, teaching awards, and leadership recognitions. πŸŽ“βœ¨

Scientific and Technological AchievementπŸŒ±πŸ†

Yongfeng Li, Xiaoying Dong, and collaborators have made significant contributions to wood hybrid materials and coatings through patented innovations. A notable patent (ZL201610114880.4) describes a superhydrophobic, oleophobic, antifungal, antibacterial, fire-retardant, and weather-resistant wood modifier, transferred on 30 November 2017 for οΏ₯330,000. Another patent (ZL201610114670.5) covers waterborne wood coatings modified by 2D graphene oxide and 1D nanocellulose, transferred on 1 September 2020 for οΏ₯100,000. Innovative nanoclay (ZL201210287368.1) and POSS (ZL201210287595.4) infiltration methods for hybrid nanocomposites were also patented, transferred in 2020 and 2021, respectively, each for οΏ₯100,000. These advancements highlight breakthroughs in sustainable, functional materials. πŸŒ±πŸ”¬βœ¨

Book/ChapterπŸ“–

Yongfeng Li has contributed significantly to the field of composite materials and biopolymer grafting through key book chapters. In Advances in Composite Materials – Analysis of Natural and Man-made Materials (2011), Chapter 9 explores “Wood-Polymer Composites,” highlighting innovative approaches to material enhancement (ISBN: 978-953-307-449-8). Additionally, in Biopolymer Grafting: Applications (2017), co-authored with Xiaoying Dong, Chapter 11 delves into “Grafting Modification of Wood for High Performance,” showcasing advancements in biopolymer applications (ISBN: 978-0-12-810462-0). Published by INTECH and Elsevier, these works underscore groundbreaking insights into sustainable and high-performance materials. πŸ“šπŸŒ±βœ¨.

Contributions and Research Focus πŸ”¬

Prof. Yongfeng Li’s research primarily revolves around wood science and sustainable materials engineering. He specializes in wood reinforcement and stabilization, polymer-wood composites, and nanotechnology applications. His work includes innovations like epoxy-acrylic polymer filling for wood strengthening, graphene oxide-enhanced coatings, and vacuum-thermo treatments for dimensional stability. Prof. Li’s research also explores environmentally friendly structural materials, such as laminated poplar veneer lumber and in-situ polymerized wood panels. His contributions significantly advance sustainable construction materials, mechanical property enhancement, and green engineering solutions, bridging the gap between academia and industrial applications. πŸŒ±πŸ—οΈπŸ§ͺ

Publication Top NotesπŸ“„βœ¨

Current utilization of waste biomass as filler for wood adhesives: A review

Enhancing the Mechanical Properties of Waterborne Polyurethane Paint by Graphene Oxide for Wood Products

Acrylic Resin Filling Cell Lumen Enabled Laminated Poplar Veneer Lumber as Structural Building Material

Nanocellulose-reinforced polyurethane as flexible coating for cork floor

Acetylated nanocellulose reinforced hydroxypropyl starch acetate realizing polypropylene replacement for green packaging application

AgCu Nanoparticles as an Antibacterial Coating for Wood

Epoxy-Acrylic Polymer In-Situ Filling Cell Lumen and Bonding Cell Wall for Wood Reinforcement and Stabilization

 

Omar Khatir | Biomaterials | Best Researcher Award

Omar Khatir | Biomaterials | Best Researcher Award

Dr Omar Khatir, University of Sidi Bel Abbes, AlgeriaΒ 

Dr. Omar Khatir is an accomplished researcher specializing in biomechanics and biomaterials, with a focus on medical device innovation. πŸŽ“βš™οΈ Holding a Ph.D. in Mechanical Engineering, his work advances middle ear prostheses and orthopedic implants, utilizing finite element modeling, hydroxyapatite, and honeycomb structures for improved performance. 🦻🦾 Dr. Khatir has authored high-impact publications and presented at prestigious conferences like IConTES 2024 and SNIBIA 2023. πŸŒπŸ“š Proficient in tools like MATLAB, Abaqus, and SolidWorks, he bridges academia and industry through teaching, research, and production management. His contributions enhance healthcare technology and patient outcomes, cementing his status as a leader in the field. πŸŒŸπŸ’‘

Publication Profile

Orcid

Educational Background πŸŽ“

Dr. Omar Khatir has an impressive academic foundation in mechanical engineering πŸŽ“βš™οΈ from Djilali LiabΓ¨s University, Sidi Bel Abbes. Currently pursuing a Ph.D. (2022–2025), his research focuses on the mechanical behavior of biomaterials for middle ear prosthesis implants. 🦻 Prior to this, he earned a Master’s degree (2019–2021), specializing in design and simulation, with a thesis on developing a torsion test bench. πŸ› οΈ He also holds a Bachelor’s degree (2016–2019), where he analyzed performance anomalies in Wankel engines. πŸ”§ His academic journey began with a Baccalaureate in Math-Technics (2016), emphasizing electrical engineering. πŸ”ŒπŸ“

Professional ExperienceΒ πŸ’Ό

Dr. Omar Khatir has diverse professional experience in mechanical engineering πŸ› οΈ. As a University Lecturer (2023–2024) at Djilali LiabΓ¨s University, he teaches undergraduate and postgraduate courses, supervises student research, and conducts biomechanical research πŸ«πŸ”¬. Previously, as a Workshop Manager (2022–2023) at the Military Clothing and Sleeping Establishment, he managed production processes, maintained quality standards, and oversaw equipment maintenance βš™οΈ. Between 2019 and 2022, he worked as a Freelance Mechanical Engineer, providing engineering services in automotive mechanics πŸš— and agricultural equipment maintenance 🚜. He also gained industrial experience through an internship at CMA-Sidi Bel Abbes in 2019.

International Conferences 🌐

Dr. Omar Khatir has actively participated in international conferences 🌍, presenting his research on biomaterials and medical devices. He delivered a poster presentation at the International Conference on Technology, Engineering, and Science (IConTES) 2024 in Antalya, Turkey, evaluating Polyetheretherketone (PEEK) as an alternative to titanium in middle ear implants 🦻. At SNIBIA 2023 in Algeria, he gave an oral presentation on the behavior of middle ear prostheses using finite element modeling 🧠. He also presented on biocompatible materials with hydroxyapatite coating at SDACM 2024 in Algeria.

Research Focus Area 🌱🧬

Dr. Omar Khatir focuses on biomechanics and biomaterials, with particular emphasis on medical implants. His research addresses the mechanical behavior of materials used in middle ear prostheses and orthopedic implants 🦻πŸ’ͺ. Dr. Khatir explores finite element modeling for optimizing prosthesis performance, applying advanced material degradation techniques and studying biocompatible materials like hydroxyapatite for implants 🦠. His work aims to improve patient outcomes by enhancing implant design, particularly with honeycomb structures and multi-cellular foam technology used in prosthetics and orthopedic devices. His research significantly impacts medical device optimization for better patient quality of life.

Publication Top Notes

Enhancing pressure ulcer prevention through optimized design of a multi-cellular foam mattress

Enhancing middle ear implants: Study of biocompatible materials with hydroxyapatite coating

Enhanced orthopedic implant design for transfemoral amputation incorporating a honeycomb structure technology

Multi-objective optimization of prosthetic multi-cells foam liner

Optimizing mechanical behavior of middle ear prosthesis using finite element method with material degradation FGM in three functions

Evaluation and Comparison of the Mechanical Behaviors of a Middle Ear Prosthesis using the Finite Element Method

Conclusion πŸ”

Dr. Omar Khatir is highly suitable for consideration for a Best Researcher Award based on his academic background, research achievements, practical contributions, and impact on healthcare technology. His dedication to advancing medical device technology and improving patient outcomes makes him a strong contender.

Vinutha Moses | Biomaterials | Biomaterials Excellence

Vinutha Moses | Biomaterials | Biomaterials Excellence

Dr Vinutha Moses, RV College of Engineering, India

Dr. Vinutha Moses is a dedicated researcher and educator in biomaterials and chemical engineering, with extensive experience as an Assistant Professor at R.V. College of Engineering and Sapthagiri College of Engineering. Her work focuses on sustainable materials, innovative biomaterials, and eco-friendly solutions. Key publications include studies on bio-resins from organic waste, nanotechnology in water treatment, and high-strength cellulose resins for wood composites. Actively engaged in conferences and workshops, she continually enhances her expertise in AI, sustainable technologies, and biomaterial applications. Her strong academic background and commitment to sustainable innovation make her a valuable contributor to biomaterials research. πŸŒ±πŸ”¬πŸ“š

Publication Profile

GoogleScholar

Orcid

Educational Background πŸŽ“

Dr. Vinutha Moses holds an MSc(Res) and is pursuing a Ph.D. in Chemical Engineering from RV College of Engineering, Bangalore, Karnataka, India. Her advanced studies emphasize the development of sustainable and innovative materials, highlighting her expertise in chemical processes and biomaterials. Her academic background is grounded in rigorous research and applications that bridge chemical engineering with environmental sustainability. This educational foundation supports her ongoing contributions to the field, aligning with her broader interests in eco-friendly solutions and innovative research. Dr. Moses’ qualifications reflect her commitment to academic excellence and impactful research. πŸŽ“πŸ”¬πŸŒ±

Current Role and Focus πŸ’Ό

Dr. Vinutha Moses has extensive teaching experience in chemical engineering, having worked as an Assistant Professor at R.V. College of Engineering since 2016 and Sapthagiri College of Engineering from 2012 to 2016. She has also served as a Lecturer in various institutions, including R.V. College of Engineering (2007), Nijaiingappa Educational Centre (2002-2003), and Good Wills Polytechnical College (2001-2002). In addition to her academic roles, she has coordinated technical and non-technical events, showcasing her leadership and organizational skills. Dr. Moses’ diverse teaching career reflects her dedication to education and research in chemical engineering. πŸ‘©β€πŸ«πŸ”¬πŸ“š

Research Focus Area 🌱🧬

Dr. Vinutha Moses’ research primarily focuses on biomaterials, sustainable materials, and environmental applications of chemical engineering. Her work includes the development of bio-resins from organic waste for high-strength composites, wastewater treatment using nanotechnology and microbial fuel cells, and exploring eco-friendly solutions like bio-based polymers and biofuels. She has also researched advanced applications in oil recovery, including microbial enhancement and biosurfactants. With a strong background in nanotechnology, her work spans the intersections of sustainability, chemical engineering, and innovative biomaterials for environmental impact. πŸŒ±πŸ”¬πŸ’‘

Participation at National/International Conference πŸŽ“πŸŒ

Dr. Vinutha Moses has actively contributed to various international conferences, showcasing her expertise in sustainable engineering and technology. She presented on “Integrated Waste Management Systems” at the International Conference on Sustainable Environment and Engineering (ICSEE’19) in 2019. Additionally, her work on “Nanotechnology as Antibacterial and Heavy Metal Removal in Wastewater Treatment” was featured at the International Conference on Sustainable Engineering and Technology (iConset 2018). Her contributions also include the development of bio-resins from organic waste for high-strength composites and research on electroless gold plating bath. Dr. Moses’ research continues to impact both environmental and material sciences. πŸŒπŸ”¬β™»οΈ

Publication Top NotesπŸ“„βœ¨

Microbial hydraulic acid fracturing

Economical synthesis of oxygen to combat the COVID-19 pandemic

Hydroxymethyl furfural (HMF) a high strength cellulose resin for wood composite laminates

Development of a bio-resin from organic waste and its application to make high strength composites

Biological synthesis of copper nanoparticles and its impact

Phytochemical profile, antibacterial and antidiabetic effects of crude aqueous leaf extract of Datura stramonium

Production of biofuel from micro algae (Chlorella pyrenoidosa) using vertical reactor system and effect of nitrogen on growth and lipid content

Use of Keratin Present in Chicken Feather as a Hydrogen Storage Material: A Review

Wastewater Treatment Using Anaerobic Fluidized Bed Membrane Bioreactor Coupled with Microbial Fuel Cells for Circular Economy

Conclusion πŸ”

Dr. Vinutha Moses’ combination of academic roles, publication record, conference participation, and continuous professional development makes her well-suited for contributing to Research for Biomaterials Excellence. Her deep understanding of chemical engineering principles, applied research in sustainable materials, and active engagement in educational and research initiatives position her as a strong candidate for leading and collaborating on innovative biomaterials projects.