Ann Kurian | Biomaterials | Best Researcher Award

Ms. Ann Kurian | Biomaterials | Best Researcher Award

Ann Anu Kurian is a biomedical researcher with over seven years of experience specializing in cellular biology and RNA-based gene delivery. She holds an MS in Biomedical Science from Morehouse School of Medicine and a BTech in Biotechnology from Lovely Professional University. Currently an Associate Researcher II and Lab Manager at the Icahn School of Medicine at Mount Sinai, her work focuses on cardiac and skeletal muscle regeneration using modified mRNA technologies. She has contributed to multiple peer-reviewed publications and has been recognized with several academic honors, including a Presidential Scholarship and research presentation awards.

Ms.Ann Kurian , Icahn school of medicine, United States.

Profile

GOOGLESCHOLAR

SCOPUS

🎓 Education

Ann Anu Kurian holds a Master of Science in Biomedical Science from Morehouse School of Medicine in Atlanta, Georgia, completed between August 2015 and May 2017. She also earned a Bachelor of Technology in Biotechnology from Lovely Professional University in India, where she studied from August 2009 to May 2013.

🌟 Experience

With over seven years of research experience, Ann currently serves as an Associate Researcher II and Research Lab Manager at the Icahn School of Medicine at Mount Sinai in New York. Since November 2023, she has been working in the Gregorio Laboratory, conducting research focused on understanding the components and molecular mechanisms that regulate actin architecture in cardiac and skeletal muscle during both normal development and disease. Prior to this, she held a similar role in the Zangi Laboratory from August 2017 to November 2023, where she led projects utilizing modified mRNA to improve cardiac outcomes post-injury and managed various aspects of laboratory operations. Her professional journey began in India at VWR International from January 2014 to August 2015, where she supported chemical projects, maintained product data in SAP, and enhanced product descriptions.

🏅 Awards and Honors

Ann has been recognized for her academic and research achievements, receiving a Presidential Scholarship from Morehouse School of Medicine in 2017. The same year, she earned a travel award to attend the Georgia Academy of Science annual meeting. She also presented her research at several prestigious conferences, including the Ninth AACR Conference on The Science of Cancer Health Disparities, the Curtis L. Parker Student Research Symposium, and the Georgia Academy of Science annual meeting.

📖Skill

Ann is skilled in a wide range of technical and laboratory techniques. Her expertise includes molecular biology methods such as PCR, gel electrophoresis, cloning, RNA and DNA extraction, modified mRNA production, and LNP characterization. She is proficient in cell culture techniques, cardiomyocyte isolation, tissue sectioning, histological staining, and confocal microscopy. Her experience also includes data analysis, IVIS imaging, and statistical evaluation. She has strong capabilities in animal handling and laboratory management, including procurement, equipment maintenance, and regulatory compliance.

🔬 Research Focus

Ann’s research centers on cellular biology and RNA-based gene delivery systems, particularly in the context of cardiac and skeletal muscle biology. Her work has explored the use of modified mRNA technologies to induce gene expression for therapeutic regeneration following cardiac injury. Her contributions to the field are reflected in numerous peer-reviewed publications, addressing areas such as cardiomyocyte proliferation, ischemic injury, cardiac regeneration, and mRNA optimization.

📘 Publications

Pkm2 regulates cardiomyocyte cell cycle and promotes cardiac regeneration
Authors: A Magadum, N Singh, AA Kurian, I Munir, T Mehmood, K Brown, …
Year: 2020
Journal: Circulation (Volume 141, Issue 15, Pages 1249–1265)

Altering sphingolipid metabolism attenuates cell death and inflammatory response after myocardial infarction
Authors: Y Hadas, AS Vincek, E Youssef, MM Żak, E Chepurko, N Sultana, …
Year: 2020
Journal: Circulation (Volume 141, Issue 11, Pages 916–930)

Ablation of a single N-glycosylation site in human FSTL 1 induces cardiomyocyte proliferation and cardiac regeneration
Authors: A Magadum, N Singh, AA Kurian, MTK Sharkar, E Chepurko, L Zangi
Year: 2018
Journal: Molecular Therapy – Nucleic Acids (Volume 13, Pages 133–143)

Optimization of 5′ untranslated region of modified mRNA for use in cardiac or hepatic ischemic injury
Authors: N Sultana, Y Hadas, MTK Sharkar, K Kaur, A Magadum, AA Kurian, …
Year: 2020
Journal: Molecular Therapy Methods & Clinical Development (Volume 17, Pages 622–633)

Direct reprogramming induces vascular regeneration post muscle ischemic injury
Authors: K Kaur, Y Hadas, AA Kurian, MM Żak, J Yoo, A Mahmood, H Girard, …
Year: (Year not provided)
Journal: Molecular Therapy (Volume 29, Issue 10, Pages 3042–3058)

Prof Yongfeng Li | Biomaterials | Best Researcher Award

Prof Yongfeng Li | Biomaterials | Best Researcher Award

Prof Yongfeng Li, Forestry College of Shandong Agricultural University, China

Prof. Yongfeng Li, a leading researcher in Wood Science and Technology, holds a Ph.D. from Northeast Forestry University, China. With international experience as a visiting scholar at the University of Maryland and FPInnovations in Canada, he excels in polymer-wood composites, nanotechnology, and sustainable materials. Prof. Li’s groundbreaking research is published in high-impact journals like Nature and ACS Applied Nano Materials. He holds numerous patents, including innovative wood treatments, and has received prestigious awards such as the Shenzong Qi Wood Award. As a project leader and editorial board member, he combines academic excellence with impactful innovation. 🌱🏆📚.

Publication Profile

SCOPUS

ORCID

Academic and Experience 🎓

Prof. Yongfeng Li has a distinguished educational background and professional experience in Wood Science and Technology. He earned his Ph.D. (2008-2012), Master’s (2005-2008), and Bachelor’s (2001-2005) degrees from Northeast Forestry University, China. Prof. Li expanded his expertise through international exposure as a Visiting Scholar at the University of Maryland (2016-2017) in Material Science and Engineering and at FPInnovations in Canada (2011-2012), focusing on wood modification. This blend of advanced education and global experience underpins his leadership in wood science, sustainable materials, and innovative research, cementing his reputation as a prominent figure in his field. 🌳🔬🌍

Accolades and Recognition 🥇

Prof. Yongfeng Li has received numerous prestigious awards and honors throughout his illustrious career. 🌟 In 2019, he became an Editorial Board Member of Advances in Materials. 📘 In 2018, he earned third prize for “National Ecological Civilization & E-Teaching Achievements” 🌍 and was named “Pacemaker to Young Post Expert” at Shandong Agricultural University. 🏅 His first prize in the “Micro-Lecture Competition for Agriculture and Forestry Majors” followed in the same year. 📚 Earlier, he received honors like the Jiangsu High-Level Talent Plan (2015) 💼 and the “SHENZONGQI” Wood Science Paper Prize (2012). 📜 His academic journey is decorated with multiple scholarships, teaching awards, and leadership recognitions. 🎓✨

Scientific and Technological Achievement🌱🏆

Yongfeng Li, Xiaoying Dong, and collaborators have made significant contributions to wood hybrid materials and coatings through patented innovations. A notable patent (ZL201610114880.4) describes a superhydrophobic, oleophobic, antifungal, antibacterial, fire-retardant, and weather-resistant wood modifier, transferred on 30 November 2017 for ¥330,000. Another patent (ZL201610114670.5) covers waterborne wood coatings modified by 2D graphene oxide and 1D nanocellulose, transferred on 1 September 2020 for ¥100,000. Innovative nanoclay (ZL201210287368.1) and POSS (ZL201210287595.4) infiltration methods for hybrid nanocomposites were also patented, transferred in 2020 and 2021, respectively, each for ¥100,000. These advancements highlight breakthroughs in sustainable, functional materials. 🌱🔬✨

Book/Chapter📖

Yongfeng Li has contributed significantly to the field of composite materials and biopolymer grafting through key book chapters. In Advances in Composite Materials – Analysis of Natural and Man-made Materials (2011), Chapter 9 explores “Wood-Polymer Composites,” highlighting innovative approaches to material enhancement (ISBN: 978-953-307-449-8). Additionally, in Biopolymer Grafting: Applications (2017), co-authored with Xiaoying Dong, Chapter 11 delves into “Grafting Modification of Wood for High Performance,” showcasing advancements in biopolymer applications (ISBN: 978-0-12-810462-0). Published by INTECH and Elsevier, these works underscore groundbreaking insights into sustainable and high-performance materials. 📚🌱✨.

Contributions and Research Focus 🔬

Prof. Yongfeng Li’s research primarily revolves around wood science and sustainable materials engineering. He specializes in wood reinforcement and stabilization, polymer-wood composites, and nanotechnology applications. His work includes innovations like epoxy-acrylic polymer filling for wood strengthening, graphene oxide-enhanced coatings, and vacuum-thermo treatments for dimensional stability. Prof. Li’s research also explores environmentally friendly structural materials, such as laminated poplar veneer lumber and in-situ polymerized wood panels. His contributions significantly advance sustainable construction materials, mechanical property enhancement, and green engineering solutions, bridging the gap between academia and industrial applications. 🌱🏗️🧪

Publication Top Notes📄✨

Current utilization of waste biomass as filler for wood adhesives: A review

Enhancing the Mechanical Properties of Waterborne Polyurethane Paint by Graphene Oxide for Wood Products

Acrylic Resin Filling Cell Lumen Enabled Laminated Poplar Veneer Lumber as Structural Building Material

Nanocellulose-reinforced polyurethane as flexible coating for cork floor

Acetylated nanocellulose reinforced hydroxypropyl starch acetate realizing polypropylene replacement for green packaging application

AgCu Nanoparticles as an Antibacterial Coating for Wood

Epoxy-Acrylic Polymer In-Situ Filling Cell Lumen and Bonding Cell Wall for Wood Reinforcement and Stabilization

 

Dr Markus Laubach | Biomaterials | Best Researcher Award

Dr Markus Laubach | Biomaterials | Best Researcher Award

Dr Markus Laubach, LMU University Hospital Munich, Germany

Dr. Markus Laubach 🎓🩺 is a distinguished researcher in orthopaedics and medical innovation. Holding a Ph.D. in preclinical assessment of novel medical devices, an MBA in Healthcare Management, and certifications in emergency medicine, he combines clinical expertise with research excellence. 🏥🔬 His groundbreaking work focuses on scaffold-guided bone regeneration, 3D-printed implants, and bone grafting techniques, published in top journals like Biomaterials Science and Scientific Reports. 💡📚 Dr. Laubach has secured over EUR 350,000 in grants and won prestigious awards, including the Best Poster Award at DKOU 2023. 🌍 He actively collaborates globally, advancing orthopaedic trauma care. 🦴✨

Publication Profile

Orcid

Scopus

Education and Training🎓

Dr. Markus Laubach 🎓 began his educational journey at Stefan-George-Gymnasium, earning his Abitur in 2007 🎒. He trained as a paramedic 🚑 at Arbeiter-Samariter-Bund in 2008. He pursued Medicine 🩺 at Maastricht University (2010–2016) and earned his Dr. med. from Charité Berlin in 2019 📚, focusing on brain aging and executive functioning 🧠. Further, he specialized in Emergency Medicine 🚨 and completed his Ph.D. at QUT 🦴 (2020–2023), researching bone graft aspirator devices. Recently, he earned an MBA 🎓 in Health Care Management 🏥. Currently, he advances orthopaedic research at LMU Munich through the prestigious Feodor Lynen Fellowship 🌍.

Professional Experience💼

Dr. Markus Laubach 🩺 has extensive professional experience in orthopaedics and trauma surgery. He is currently a Resident at the LMU University Hospital 🏥, Musculoskeletal University Center Munich (2023–present). Previously, he worked as a Resident at RWTH Aachen University Hospital (2016–2020) 🦴, advancing his surgical expertise. Dr. Laubach further honed his skills in medtech commercialization through The BridgeTech Program 🌐 in Australia (2021–2022). His medical journey began as a Paramedic 🚑 with organizations like Malteser Hilfsdienst (2011–2016), Arbeiter Samariter Bund (2009–2010), and DRK Rettungsdienst GmbH (2008–2009), reflecting his dedication to emergency medical care and patient well-being 🤝.

Research Focus Area 🌱🧬

Markus Laubach is a researcher specializing in biomaterials, bone regeneration, and spinal surgery innovations. His work primarily focuses on advancing implants, scaffolds, and bone grafts for clinical applications, particularly in lumbar spinal fusion and bone defect treatments. He is involved in designing 3D printable, patient-specific bioresorbable bone scaffolds to promote bone regeneration. Laubach’s research extends to the development of novel bone graft harvesting techniques and the assessment of biodegradable interbody cages. His work intersects with orthopaedic trauma, regenerative medicine, and biomechanics. 🦴🧬🩺

Memberships

Dr. Markus Laubach is an active member of several prestigious medical and research organizations. He is affiliated with AO Trauma 🦵, focusing on advancing trauma care, and the Deutsche Gesellschaft für Orthopädie und Unfallchirurgie (DGOU) 🇩🇪, which promotes orthopedic and trauma surgery excellence. He also participates in the Gesellschaft für Extremitätenverlängerung und -rekonstruktion (GEVR) 🦴, dedicated to extremity reconstruction. Additionally, Dr. Laubach is a member of the Orthopaedic Research Society (ORS) 🔬 and the Tissue Engineering and Regenerative Medicine International Society (TERMIS) 🌍, contributing to cutting-edge research in tissue engineering and regenerative medicine.

Awards🏆

Dr. Markus Laubach has received notable recognition for his scientific contributions. In 2023, he was awarded the Best Poster Award at the DKOU 2023 in Berlin 🏆. His research has attracted competitive grants, including EUR 182,022.36 from the Bundesministerium für Bildung und Forschung for a clinical study on tibial transverse callus distraction in diabetic foot ulcer patients 💉, and EUR 39,600 from the Feodor Lynen Return Fellowship 🏅. Dr. Laubach also secured funding from the Volkswagen Foundation (EUR 38,000) and Clive & Vera Ramaciotti Foundation (AUD 130,000) for innovative bone defect treatments using 3D-printed scaffolds.

Publication Top Notes📄✨

Advances in implants and bone graft types for lumbar spinal fusion surgery

Modular design workflow for 3D printable bioresorbable patient-specific bone scaffolds: extended features and clinical validation.

Preclinical assessment of a novel aspirator device for intramedullary bone graft harvesting

Lost in translation: the lack of agreement between surgeons and scientists regarding biomaterials research and innovation for treating bone defects

An innovative intramedullary bone graft harvesting concept as a fundamental component of scaffold-guided bone regeneration: A preclinical in vivo validation

Chirurg*innen vs. Wissenschaftler*innen – Mind the Gap! DKOU Science-Slam 2023: Umfragestudie zu Biomaterialien bei Knochendefekten [Surgeons vs. scientists—Mind the gap!: Survey study on biomaterials for bone defects]

How framing bias impacts preferences for innovation in bone tissue engineering

Semi-automated scaffold design workflow to facilitate clinical translation of scaffold guided bone regeneration

The development of a modular design workflow for 3D printable bioresorbable patient-specific bone scaffolds to facilitate clinical translation

Histological and Immunohistochemical Characterization of Osteoimmunological Processes in Scaffold-Guided Bone Regeneration in an Ovine Large Segmental Defect Model

Conclusion

Dr. Markus Laubach’s robust academic foundation, exceptional research achievements, successful funding track record, and dedication to clinical translation make him an excellent candidate for the Best Researcher Award. His work directly addresses critical gaps in bone defect treatments, contributing both to scientific innovation and practical healthcare advancements.

Thanh Nguyen Chi | Biomaterials | Best Researcher Award

Thanh Nguyen Chi | Biomaterials | Best Researcher Award

Dr Thanh Nguyen Chi, Ho Chi Minh City University of Technology and Education, Vietnam

Dr. Thanh Nguyen Chi is a renowned researcher in material science and nanotechnology with a stellar academic and professional background. Holding a PhD in Material Engineering – Polymer Engineering from Suranaree University of Technology, Thailand, and a second PhD in Organic Chemistry from Vietnam National University, Dr. Thanh’s research expertise spans nanostructured composites, supercapacitors, and eco-friendly remediation 🌱. Currently a lecturer at Ho Chi Minh City University of Technology and Education, he has contributed extensively to sustainable technologies and innovative energy solutions ⚡. His publications reflect a dedication to impactful scientific progress and environmental care 🌍.

Publication Profile

Scopus

Education Background 🎓

Dr. Thanh Nguyen Chi’s academic journey showcases his dedication to materials science and engineering. He completed postdoctoral research in Materials Technology at the Institute of Macromolecular Chemistry of the Czech Academy of Sciences (2019-2021) and at the Synchrotron Light Research Institute in Thailand (2017-2018) 🔬. His dual PhDs include Material Engineering-Polymer Engineering from Suranaree University of Technology, Thailand (2012-2017) and Organic Chemistry from Vietnam National University in partnership with UC Berkeley (2011-2012) 🎓. He also holds an MSc in Physical Chemistry (2008-2011) and a BSc in Material Science-Polymer Science (2003-2007) from Vietnam National University 🧪.

Professional Experience 💼

Dr. Thanh Nguyen Chi’s professional experience reflects his rich academic and research career. Currently a Lecturer at Ho Chi Minh City University of Technology and Education (2021-present) 🏫, he previously served as a Lecturer and Researcher at Ton Duc Thang University (2018-2019) and Suranaree University of Technology, Thailand (2017-2018) 📚. Dr. Thanh also worked as a Researcher at Ho Chi Minh City University of Technology (2011-2012) and at Saigon Hi-Tech Park’s R&D Center (2008-2010) 🔬. His industry experience includes being a Technical Service Specialist at Bayer MaterialScience (Covestro Vietnam) (2010-2011) 🏭, showcasing a robust blend of academia and practical applications.

Research Focus Area 🌱🧬

Dr. Nguyen Chi Thanh’s research focuses on the development of advanced materials and nanotechnology for sustainable applications 🌍. His work spans hydrogen and oxygen production via nanomaterial arrays for energy generation ⚡, drug delivery systems using hyperthermia and photothermal effects 💊, and supercapacitors for energy storage 🔋. He also explores environmental solutions, such as bioplastic films from avocado seed starch and nanocellulose fibers 🌱, and the potential of Hibiscus rosa-sinensis for environmental remediation 🌿. Additionally, his research includes electrochemical sensors for neurotransmitter detection and the modification of polymer blends for improved material properties 🧪.

Publication Top Notes

Development of three-dimensional iron-doped cobalt phosphides nanorod arrays coupled on nickel substrate for effective hydrogen and oxygen production

Photothermal therapy and cell imaging tracking of porous silicon nanoparticle by magnesiothermic reduction and surface modification

Hierarchical Co(OH)2 nanosheets-attached flexible non-woven fabric network coupled with iron oxides nanoparticles-deposited nitrogen-doped carbon for supercapacitor application

THE EFFECT OF CARBON BLACK PERCENTAGE ON MECHANICAL PROPERTIES AND MICROSTRUCTURE OF POLYBUTYLENE TEREPHTHALATE/POLYAMIDE 6/CARBON BLACK BLENDS

Study on Tensile Strength of High-Density Polyethylene/Polyethylene Terephthalate Blend

Hibiscus rosa-sinensis as a potential hyperaccumulator in metal contaminated magnesite mine tailings

Mixed pollutants adsorption potential of Eichhornia crassipes biochar on Manihot esculenta processing industry effluents

Conclusion 🏆

Dr. Thanh Nguyen Chi’s research has significantly impacted materials science and environmental engineering, demonstrating his commitment to scientific advancement and real-world applications. His academic qualifications, teaching dedication, and innovative projects make him a distinguished candidate for the Best Researcher Award.