Assist. Prof. Dr Yousef Moradi | Materials Science | Material Scientist Award

Assist. Prof. Dr Yousef Moradi | Materials Science | Material Scientist Award

Dr. Yousef Moradi is an accomplished epidemiologist and lecturer with a B.Sc. in Public Health (2013), M.Sc. in Epidemiology (2015), and Ph.D. in Epidemiology (2020) from Iran University of Medical Sciences 🎓🔬. His Ph.D. research explored the transmission of ESBL-producing E. coli in the environment and food chain 🧫🌍. He has supervised numerous theses on infectious and chronic diseases and currently serves at Kurdistan University of Medical Sciences 🏥📊. Recognized among the top 1% most cited researchers globally 🌐📈, Dr. Moradi’s work bridges public health, microbiology, and data-driven disease prevention strategies.

Assist. Prof. Dr Yousef Moradi, Kurdistan University of Medical Sciences, Iran

Profile

GOOGLESCHOLAR

🎓 Education 

Dr. Yousef Moradi earned his Ph.D. in Epidemiology (2016–2020) from Iran University of Medical Sciences, ranked 3rd nationally in medical education 🎓🏥. His dissertation focused on the transmission of extended spectrum β-lactamase (ESBL) producing E. coli across environmental, food, and human chains 🧫🌱👨‍⚕️. He completed his Ph.D. with an outstanding GPA of 19.93/20 under the guidance of Professors Hamid Reza Baradaran, Babak Eshrati, and advisor Abbas Motevalian 🧠📚. Earlier, he completed his M.Sc. in Epidemiology (2013–2015) at the same university with a perfect GPA of 20/20, laying the groundwork for his impactful research in public health 📈🔍.

🏥 Experience 

Dr. Yousef Moradi is an Assistant Professor of Epidemiology with a Ph.D. from Iran University of Medical Sciences and over 160 peer-reviewed publications 🧪📚. He has extensive experience analyzing large-scale health datasets, including electronic health records, using quasi-experimental methods, cohort studies, and advanced statistical modeling in R, Stata, and SPSS 📊💻. At Kurdistan University of Medical Sciences, he has taught MSc and MD students and supervised 10+ research theses 🎓📖. His technical proficiency spans meta-analyses, systematic reviews, and national survey evaluations 📈🔍. Dr. Moradi is committed to impactful global health research and open to remote collaborations 🌍🩺.

📖 Book

Dr. Yousef Moradi has authored key academic resources designed for public health and epidemiology scholars 📚📊. The Statistical Note Book simplifies complex biostatistical concepts for students and researchers using real-world health data examples 📈🧠. The Epidemiology Note Book covers foundational and advanced topics in disease surveillance, study design, and outbreak investigation 🦠📋. His third book, Non-communicable Diseases Epidemiology in Iran, analyzes patterns, trends, and prevention strategies for chronic diseases like diabetes, cancer, and cardiovascular disorders within the Iranian population 💉❤️🧬. These texts serve as vital tools for health professionals and policy researchers across disciplines.

🔍 Research Focus 

Dr. Yousef Moradi’s research spans a broad spectrum of epidemiological and public health domains 🧠🩺. His interests include non-communicable diseases (e.g., gynecology, diabetes, cancer) 🎗️, communicable diseases (HIV/AIDS, AMR) 🦠, and high-risk populations (PWID, MSM, FSWs) 🚻. He specializes in social determinants of health, socioeconomic analysis, and evidence synthesis through systematic reviews and meta-analyses 📊📚. His methodological expertise covers modeling causality, psychometrics, molecular epidemiology (MLST, PCR), and large-scale study designs like cohort, case-control, and RCTs 🔍🧬. Dr. Moradi’s integrative approach strengthens global health strategies through data, diagnostics, and interdisciplinary analysis 🌍💡.

📚 Publication Top Notes

Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021

Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: a systematic analysis …

Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in …

Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the …

Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease …

 

Dr Chih-Jung Chang | Nanomaterials | Best Researcher Award

Dr Chih-Jung Chang | Nanomaterials | Best Researcher Award

Dr. Chih-Jung Chang is a prominent researcher in microbiology, immunology, and gut microbiota, with a research focus that spans from traditional Chinese medicine to extracellular vesicle biology. Holding a Ph.D. from the Graduate Institute of Biomedical Science at Chang Gung University, he currently serves as an Associate Research Fellow at Xiamen Chang Gung Hospital. His prolific research contributions include more than 50 peer-reviewed articles in high-impact journals, several patents, and notable international conference presentations. Dr. Chang’s work is widely recognized for its innovation in microbiome-based therapeutics, immune modulation, and metabolic disease intervention.

Dr Chih-Jung Chang, Huaqiao University, China

Profile

SCOPUS

🎓 Education 

Dr. Chih-Jung Chang holds a strong multidisciplinary academic background spanning nutrition, biotechnology, and biomedical science 🎓🧬📚. He earned his Ph.D. in Microbiology and Immunology from the Graduate Institute of Biomedical Science at Chang Gung University (2010–2015) 🔬🧫. Prior to that, he completed a Master’s degree in Medical Biotechnology and Laboratory Science from the same university (2007–2009) 🧪💉. His academic journey began with a Bachelor’s degree in Nutrition from Chung Shan Medical University (2003–2007) 🥗📘. This robust educational foundation has empowered him to conduct impactful, cross-disciplinary research in immunology, microbiota, and disease modulation 🌱🧠.

🏥 Experience

Dr. Chih-Jung Chang has built an impressive research career in immunology and microbiota science 🧬🧫. He began as a Postdoctoral Fellow at the Molecular and Clinical Immunology Center, Chang Gung University (2015–2017) 🧪📚. He then advanced to Assistant Research Fellow at the Microbiota Research Center (2017–2019), where he deepened his work on host-microbe interactions 🔬🌱. Since 2019, he has been serving as an Associate Research Fellow at the Medical Research Center, Xiamen Chang Gung Hospital 🏥💡. His roles reflect a consistent focus on translational microbiome research, immunomodulation, and innovative biomedical applications 🌍💊.

🏅 Award 

Dr. Chih-Jung Chang has received prestigious accolades for his outstanding academic and scientific contributions 🏅📚. He was honored with the Excellent Thesis Award by the 7th Wang Minning Foundation in Taiwan, recognizing his impactful doctoral research in microbiology and immunology 🎓🔬. Additionally, he earned the Distinguished Paper Award from the Taiwan Society for Microbiology for his innovative work in gut microbiota and immune modulation 🧫🧠. These awards reflect his excellence in scientific writing, original research, and contributions to the global microbiological community 🌍📖, strengthening his reputation as a leader in biomedical science.

🎤 Conference Presentation 

Dr. Chih-Jung Chang has actively presented his groundbreaking research on gut microbiota, extracellular vesicles, and natural immunomodulators at international conferences across the USA, Australia, China, and Fiji 🌍🎤. His studies highlight the effects of Ganoderma lucidum and Antrodia cinnamomea on natural killer cells, immune signaling, and obesity modulation 🧫🦠🔥. He also explored Akkermansia muciniphila‘s role in metabolic regulation and EV-based diagnostics in allergic rhinitis and lung injury 🧬💨. From Lorne Infection & Immunity to ISEV 2024, his work bridges microbiome science with clinical innovation, earning global attention in the field of biomedical microbiology 🧠🔬🌱.

🌿 Patent 

Dr. Chih-Jung Chang holds multiple U.S. patents focused on natural compound-based therapies 🌿🧪. His inventions include novel methods to extract Ganoderma lucidum and Hirsutella sinensis polysaccharides with anti-obesity, insulin-sensitizing, and liver-protective effects 💊🩺. He also pioneered microbiome-driven approaches using Parabacteroides goldsteinii to reduce body fat, improve glucose tolerance, and treat fatty liver disease 🧫⚖️🍽️. These patents reflect his innovative contributions to functional foods, microbiome-based therapeutics, and metabolic disease management 🔬🧠. His work bridges natural medicine with cutting-edge biotechnology for tackling global health challenges related to obesity, diabetes, and inflammation 🌍💡.

🔬 Research Focus 

Dr. Chih-Jung Chang’s research focuses on the interplay between the gut microbiota, extracellular vesicles, and host immunity, using advanced multi-omics technologies 🧬🔬. His work explores how microbiome-derived vesicles influence diseases such as psoriasis, gestational diabetes, asthma, and inflammatory disorders 🤒🧫. By employing animal models like mice and zebrafish 🐭🐟, he investigates the anti-inflammatory, antioxidative, and immunomodulatory properties of natural compounds and microbial signals 🌿💊. Dr. Chang’s goal is to translate these findings into novel therapeutic strategies and diagnostic biomarkers for chronic diseases, contributing significantly to the field of precision microbiome medicine 🧠🩺🌍.

📚 Publications

Multi-omics Analysis of Outer Membrane Vesicles from P. goldsteinii in a Psoriasis Mouse Model

Authors: Zhaoxiang Xie, Rongqin Ke, Chih-Jung Chang, et al.
Journal: Life Sciences (2025)

Anti-inflammatory and Antioxidative Effects of Perilla frutescens-Derived Extracellular Vesicles: Insights from Zebrafish Models

Authors: Jinghong Huang, Linxin Chen, Wenhua Li, Chih-Jung Chang
Journal: Molecular Immunology (2025)

Microbiome Analysis of Serum Extracellular Vesicles in Gestational Diabetes Patients

Authors: Chih-Jung Chang, Yuci Bai, Hong Jiang, Hungchien Huang, Tien Jui Chen
Journal: Acta Diabetologica (2025)

Assoc. Prof. Dr. Peeyush Kumar Kamlesh | Materials for Energy Applications | Young Scientist Award

Assoc. Prof. Dr. Peeyush Kumar Kamlesh | Materials for Energy Applications | Young Scientist Award

Assoc. Prof. Dr. Peeyush Kumar Kamlesh |  Poornima University Jaipur | India

Assoc. Prof. Dr. Peeyush Kumar Kamlesh is a distinguished physicist and materials scientist whose research bridges condensed matter physics, computational materials science, and renewable energy materials. He currently serves as Associate Professor in the Department of Physics and R&D Cell at Poornima University, Jaipur, India, and is also the Founder of Scholarly Publication India. With 33 peer-reviewed papers indexed in Scopus, 1,287 citations across 459 documents, and an h-index of 26, Dr. Kamlesh has established himself as an influential researcher in the fields of half-Heusler alloys, hybrid and double perovskites, and thermoelectric materials for sustainable energy conversion. His computational work uses advanced density functional theory (DFT) tools such as WIEN2k and BoltzTraP to analyze the structural, electronic, and thermoelectric properties of novel semiconductors. He has authored books including Advancements in Half-Heuslers: A Key to Clean Energy and Sustainable Future: Exploring Renewable Energy Solutions, and holds multiple patents on eco-friendly nanomaterials and photovoltaic applications. Dr. Kamlesh’s scientific contributions span leading journals such as Materials Chemistry and Physics, Physica B, Journal of Molecular Modeling, and Physics Scripta, where his findings on lead-free perovskite alternatives and half-Heusler compounds have advanced green energy research. As a reviewer for high-impact journals including Journal of Alloys and Compounds and Scientific Reports, he actively supports peer excellence in materials science. Beyond his research, he supervises Ph.D. students and has organized numerous international conferences and faculty development programs on research methodology. He is recognized for his Young Scientist Award and his leadership in the Centre for Research, Instrumentation & Development (CRID). Through his dedicated pursuit of innovative materials for clean energy and his commitment to academic advancement, Assoc. Prof. Dr. Peeyush Kumar Kamlesh continues to make an enduring impact on the scientific community and the sustainable future of energy materials.

Profile

SCOPUS

ORCID

GOOGLESCHOLAR

Publications

Comprehensive Theoretical Investigation of NaAlX (X = C, Si and Ge) Half-Heusler Compounds: Unveiling the Multifaceted Properties for Advanced Applications

Authors: Ghanshyam Lal Menaria, Upasana Rani, Peeyush Kumar Kamlesh, Dinesh C. Sharma, Ajay Singh Verma
Journal: International Journal of Modern Physics B (2025)

Physical Properties and Power Conversion Efficiency of SrZrX₃ (X = S and Se) Chalcogenide Perovskite Solar Cell

Authors: Naincy Pandit, Rashmi Singh, Anand Kumar, Tarun Kumar Joshi, Akash Shukla, Upasana Rani, Peeyush Kumar Kamlesh, Tanuj Kumar, Priyanka, Ajay Singh Verma
Journal: Modern Physics Letters B (2024)

Computational Investigation of the Fundamental Physical Properties of Lead-Free Halide Double Perovskite Rb₂NaCoX₆ (X = Cl, Br, and I) Materials: Potential Prospects for Sustainable Energy

Authors: Sunita Kumari, Upasana Rani, Monika Rani, Rashmi Singh, Peeyush Kumar Kamlesh, Sarita Kumari, Tanuj Kumar, Ajay Singh Verma
Journal: Modern Physics Letters B (2024)

Electro-Optic and Transport Properties with Stability Parameters of Cubic KMgX (X = P, As, Sb, and Bi) Half-Heusler Materials: Appropriate for Green Energy Applications

Authors: Ghanshyam Lal Menaria, Upasana Rani, Peeyush Kumar Kamlesh, Rashmi Singh, Monika Rani, Nihal Singh, Dinesh C. Sharma, Ajay Singh Verma
Journal: Modern Physics Letters B (2024)

Exploring Properties of Organometallic Double Perovskite (CH₃NH₃)₂AgInCl₆: A Novel Material for Energy Conversion Devices

Authors: Upasana Rani, Peeyush Kumar Kamlesh, Rashmi Singh, Tanuj Kumar, Rajeev Gupta, Samah Al-Qaisi, Kulwinder Kaur, Ajay Singh Verma
Journal: Modern Physics Letters B (2024)

Lead-Free Alternative Cation (Ethylammonium) in Organometallic Perovskites for Thermoelectric Applications

Authors: Anusha Dubey, Naincy Pandit, Rashmi Singh, Tarun Kumar Joshi, Banwari Lal Choudhary, Peeyush Kumar Kamlesh, Samah Al-Qaisi, Tanuj Kumar, Kulwinder Kaur, Ajay Singh Verma
Journal: Journal of Molecular Modeling (2024)

Prof Sanboh Lee | Mechanical Properties of Materials | Best Researcher Award

Prof Sanboh Lee | Mechanical Properties of Materials | Best Researcher Award

Prof. Sanboh Lee is an eminent materials scientist and engineer, currently serving as Professor Emeritus at the Department of Materials Science and Engineering, National Tsing Hua University, Taiwan. With a Ph.D. from the University of Rochester and over four decades of academic and research leadership, he has significantly advanced multiple domains in materials science. He has authored over 280 journal papers and delivered 150 international presentations, solidifying his reputation as a global thought leader. His distinguished career reflects deep expertise in dislocation mechanics, phase transformation, composite materials, and nanotechnology.

Prof Sanboh Lee, National Tsing Hua University, Taiwan

Profile

SCOPUS

ORCID

🎓 Education 

Prof. Sanboh Lee holds a prestigious academic background rooted in physics and materials science. He earned his Ph.D. in Materials Science from the University of Rochester in 1980 🧪🎓, where he developed deep expertise in defect mechanics and transport phenomena. Prior to that, he completed an M.S. in Physics from National Tsing Hua University in 1972 ⚛️📘, and a B.S. in Physics from Fu Jen Catholic University in 1970 📐🔬. His rigorous education across these renowned institutions laid a solid foundation for a lifelong contribution to scientific research and engineering innovation 🌍📚.

🏫 Experience 

Prof. Sanboh Lee is a renowned academic in materials science with decades of experience across premier institutions 🌏📚. He served as Professor at National Tsing Hua University from 1985 to 2018 and is currently a Professor Emeritus 🧑‍🏫🏅. His global research engagements include roles as Adjunct Professor at the University of Science and Technology Beijing 🇨🇳, Guest Scientist at NIST, USA 🧪🇺🇸, and Visiting Scholar at Lehigh University 🏫🔬. Earlier roles include Research Associate at the University of Rochester and Postdoctoral Researcher at Xerox’s Webster Research Center 🧫⚙️—a career deeply rooted in innovation, international collaboration, and advanced materials engineering.

🏅 Honors & Funding 

Prof. Sanboh Lee is a globally acclaimed materials scientist recognized for his groundbreaking work in nano-composite materials and nanotechnology 🧪🔬. He received research funding from the Ministry of Science and Technology, Taiwan for advancing mechanical properties in nanomaterials ⚙️🧫. His remarkable honors include the Lifetime Achievement Award by VDGOOD (2022), SAS Eminent Fellow (2021), and Fellow of ASM International and MRS-Taiwan 🏅🌏. Celebrated for his studies on defect interactions, fracture mechanics, and polymer transport, Prof. Lee’s awards reflect his lasting impact in academia and industry 🧠📚. His excellence spans decades of innovation, leadership, and global recognition 🌍🥇.

🔬 Research Focus 

Prof. Sanboh Lee’s research spans a wide spectrum of advanced materials science topics including nano-composites, defect mechanics, fracture behavior, and transport phenomena in metals and polymers 🧬🧪. His recent work, funded by the Ministry of Science and Technology, Taiwan, investigates the mechanical properties of nano-composite materials and nanotechnology ⚙️🔍. He explores diffusion-induced stress, hydrogen transport, polymer phase behavior, and magnetic and optical properties of materials under complex environments 🌡️🧲📐. His interdisciplinary contributions bridge micro/nano mechanics, biomaterials, and semiconductor devices, pushing the boundaries of modern materials engineering and applied physics 🔬🌍.

📚 Publications

Kinetic Analysis of the Cracking Behavior in Methanol-Treated Poly(methyl methacrylate)/Functionalized Graphene Composites

Authors: Bing-Hong Yang, Shou-Yi Chang, Yulin Zhang, Fuqian Yang, Sanboh Lee
Journal: Journal of Composites Science (Feb 2025)

Cracking in UV-Irradiated Poly(methyl methacrylate)/Functionalized Graphene Composites: Solvent Effect

Authors: Bing-Hong Yang, Shou-Yi Chang, Yulin Zhang, Fuqian Yang, Sanboh Lee
Journal: Journal of Polymer Research (Sept 2024)

Analysis of the Thermal Aging Kinetics of Tallow, Chicken Oil, Lard, and Sheep Oil

Authors: Yun-Chuan Hsieh, Hao Ouyang, Yulin Zhang, Donyau Chiang, Fuqian Yang, Hsin-Lung Chen, Sanboh Lee
Journal: Molecules (Sept 2024)

Creep-Recovery Deformation of 304 Stainless-Steel Springs Under Low Forces

Authors: Ming-Yen Tsai, Shou-Yi Chang, Yulin Zhang, Fuqian Yang, Sanboh Lee
Journal: Mechanics of Materials (June 2024)

A Mechanical Model for Stress Relaxation of Polylactic Acid/Thermoplastic Polyurethane Blends

Authors: Yi-Sheng Jhao, Hao Ouyang, Chien-Chao Huang, Fuqian Yang, Sanboh Lee
Journal: Journal of Composites Science (May 2024)

Thermal Degradation of Vegetable Oils

Authors: Yi-Hsiou Tsai, Donyau Chiang, Yu-Ting Li, Tsong-Pyng Perng, Sanboh Lee
Journal: Foods (April 2023)

Brownian Motion of Poly(divinylbenzene) Nanoparticles in Water

Authors: Ching-Bin Lin, Chia-Wei Lee, Hao Ouyang, Fuqian Yang, Sanboh Lee
Journal: Journal of Applied Physics (March 2023)

Mr Sina Soltani | Computational Materials Science | Best Researcher Award

Mr Sina Soltani | Computational Materials Science | Best Researcher Award

Sina Soltani is a skilled Instrumentation Engineer at Honeywell UOP, Rosemont, IL, USA, with a strong academic foundation in electrical and control engineering 🎓⚙️. He earned his B.S. and M.S. degrees from Shiraz University, Iran, in 2011 and 2013, respectively. His expertise spans estimation theory, nonlinear systems, adaptive control, signal processing, and intelligent data mining techniques 🧠📊🔧. With a deep interest in innovative industrial automation and smart system integration, he combines practical engineering with advanced control strategies to enhance system reliability and efficiency 🛠️💡📈. He continues to contribute to next-generation engineering solutions globally 🌍🔬.

Mr Sina Soltani, Honeywell UOP, United States

Profile

ORCID

GOOGLESCHOLAR

SCOPUS

🎓 Education

 Sina Soltani earned his M.Sc. in Control and Power Engineering from Shiraz University in 2014 🎓⚡ and a B.Sc. in Electrical and Computer Engineering from Shiraz University of Technology in 2012 💡🔌. He also holds a High School Diploma from Naserian High School, completed in 2005 🏫📘. His academic path is further strengthened by a range of professional certifications in PLC programming (TIA Portal, S7-400H), industrial networks (Profibus, Modbus, Ethernet), and electrical safety (ATEX, ISO 9001) 🧠📈⚙️. This blend of formal education and applied training equips him with strong expertise in automation and instrumentation engineering 🔍🔧.

📏 Experience 

Sina Soltani has over a decade of experience in instrumentation, automation, and control engineering ⚙️🔧. At Honeywell UOP 🇺🇸, he leads instrumentation system design and integration for industrial applications. Previously, he served as a senior engineer at Neyriz Ghadir Steel Complex 🇮🇷, focusing on fire & gas systems, PLC/DCS programming, and calibration 🎛️💡. At Piramoon Pardazesh Qeshm, he specialized in radioactive measurement systems and technical documentation 📊📐. He also held roles as a chief electrical engineer at PetroAzma and as a university lecturer 📚🧠. His expertise spans sensors, analyzers, motors, safety systems, and advanced process control 🌍🔍.

🛠️ Technical Skills 

Sina Soltani possesses a robust technical skill set in Instrumentation Engineering, Control Systems, Automation, and Calibration 🧪⚙️📏. He is proficient in configuring and maintaining advanced industrial instruments, including flowmeters, analyzers, and control valves 🔄🔍. With deep knowledge of PLC/DCS systems, loop tuning, and process optimization, he excels at designing and integrating control strategies for complex operations 💻🔧. His expertise includes working with safety standards (NEC, IEC) and executing diagnostics and root-cause analysis for system failures 🚨🛠️. These capabilities make him a valuable asset in driving innovation and operational excellence across modern industrial environments 🌐🏭.

🏆 Achievement 

On May 22, 2024, Sina Soltani was honored with the Top Researcher Award at Neyriz Ghadir Steel Complex, Shiraz, Iran, for his exceptional contributions to Instrumentation and Automation Engineering 🛠️📡. His innovative work in process control systems, real-time signal integration, calibration technologies, and automation reliability set a benchmark in industrial engineering ⚙️📊. This distinction reflects his impact on system accuracy, safety enhancements, and advanced control methodologies 📈🔍. Recognized for combining deep technical expertise with practical problem-solving, he continues to lead advancements in instrumentation for critical infrastructure and manufacturing environments 🌍🔬.

🔬 Research Focus 

Sina Soltani’s research is centered on advanced control systems, signal processing, and intelligent estimation methods for industrial applications 🧠📉⚙️. His recent work includes the application of autoregressive Kalman filters for gamma level measurement and well-log data estimation 🔬📡, as well as the development of fuzzy logic and iterative learning-based control algorithms for instrument air units and harmonic mitigation ⚡🔁. He also explores high-efficiency modeling of electrical machines using subdomain techniques and smart controllers for distributed energy systems ⚙️🔋🌍. His interdisciplinary focus bridges control theory, automation, and real-time optimization in complex engineering systems 🛠️📊🤖.

📚 Publications

Advances in Gamma Level Measurement by Optimal Autoregressive Kalman Filter

Author: S. Soltani
Conference: 2024 20th CSI International Symposium on Artificial Intelligence and Signal Processing

Designing and Implementing an Algorithm Based on an Autoregressive Kalman Filter to Estimate Well-Log Data

Author: S. Soltani
Conference: 2023 9th International Conference on Control, Instrumentation and Automation (ICCIA)

Introducing an Improved Control Method for Instrument Air Unit Based on Fuzzy and Iterative Learning Control

Author: S. Soltani
Journal: ISA Transactions (2025)

An Analytic 2D Subdomain Model for Slotless Electrical Machines with Internal Arc/Cubic Shape Permanent Magnets

Authors: M. Pourahmadi-Nakhli, M.J.K. SeyedHassanDaryanavard, S. Soltani
Journal: Intelligence 1(1), 13–23 (2025)

Fast Subdomain Approximation of Brushless Electrical Machines with Spoke-Hub Permanent Magnets

Authors: M. Pourahmadi-Nakhli, S.H. Daryanavard, M. Jokar-Kohanjani, S. Soltani
Conference: 2024 32nd International Conference on Electrical Engineering (ICEE)

A Novel Fuzzy Type-2 PI Repetitive Control Methodology for Harmonic Elimination in Distributed Generation Sources

Authors: S. Soltani, M. Rayat
Conference: 2024 9th International Conference on Technology and Energy Management (ICTEM)

Dr Ronit Das | Metals and Alloys | Best Researcher Award

Dr Ronit Das | Metals and Alloys | Best Researcher Award

Dr. Ronit Das is a dynamic and forward-thinking materials engineer whose expertise lies in advanced microelectronics packaging, solder reliability, and interconnect technologies. With a Ph.D. in Industrial and Systems Engineering from Binghamton University (SUNY), his work bridges the gap between academic rigor and industrial application. Currently employed at Apple Inc. as an IC Package Integration Engineer, Dr. Das has previously contributed to leading tech companies like Intel, AMD, and Applied Materials. His academic and professional trajectory highlights a deep commitment to reliability science, microscale fatigue, and innovative materials for next-generation electronic systems.

Dr Ronit Das, Binghamton University, United States

Profile

GOOGLESCHOLAR

ORCID

SCOPUS

🎓 Education

Dr. Ronit Das holds a strong academic foundation in engineering and materials science. He earned his Ph.D. in Industrial and Systems Engineering from Binghamton University – SUNY (2020–2023), where his dissertation focused on Pb-free SnAgCu-Bi solder joints and their fatigue damage properties ⚙️📉. He completed his M.S. in the same field at Binghamton (2018–2019), researching intermetallic morphology and void formation in micro-joints 🔬📊. His academic journey began with a B.E. in Mechanical Engineering from the University of Mumbai (2011–2015), where he graduated with distinction 🎯📚. His education blends mechanics, reliability, and materials innovation 🧠🛠️.

🧑‍💼 Experience

Dr. Ronit Das brings a wealth of experience across academia and industry in advanced packaging, reliability engineering, and materials science. At Apple Inc. 🖥️📦, he drives innovative IC packaging from concept to high-volume manufacturing. Previously at Applied Materials 🧪🔬, he focused on failure analysis and PVD coatings. His doctoral research at Binghamton University 🎓🔧 involved solder joint fatigue, intermetallic evolution, and thermal reliability. With prior engineering roles in India 🌏⚙️, he also worked in product development and industrial safety. His expertise spans flip-chip, 2.5D/3D packaging, electromigration, and finite element modeling 🛠️📊, making him a well-rounded engineer and researcher.

🛠️ Technical Skills

Dr. Ronit Das possesses an exceptional technical portfolio in reliability testing 🧪, including fatigue, shear, vibration, and thermal cycling analysis 🔄. He is proficient in advanced failure analysis techniques such as SEM, EBSD, EDX, CT, and AFM 🔬🧠. His hands-on expertise includes thin-film deposition, non-destructive testing, and metallographic processing 🧱⚙️. He is skilled in simulation and data tools like MATLAB, ANSYS, JMP, and SolidWorks 📊💻. With strong competencies in DFM, FMEA, and packaging design, he consistently applies analytical thinking, problem-solving, and statistical methodologies to optimize microelectronic systems and hardware reliability 🔧📐📈.

🏆 Leadership

Dr. Ronit Das has demonstrated exceptional leadership and academic excellence throughout his career. He served as the President of the Surface Mount Technology Association (SMTA) at Binghamton University, where he led technical and professional development initiatives 📡🤝. He is also an esteemed member of Alpha Pi Mu, the Industrial Engineering Honor Society, reflecting his high academic standing 🎓📘. Additionally, Dr. Das was the Vice Chair for Graduate Student Services at ASQ World Headquarters, where he advocated for student engagement in quality and reliability sciences 🌍🧪. These recognitions showcase his dedication to leadership, innovation, and community building 💼⭐.

🎤 Conference Presentation

Dr. Ronit Das has actively presented his research on low-temperature solder joint reliability and interconnect durability at prestigious international conferences. His work at the Pan Pacific Microelectronics Symposium (2023) focused on optimizing solder fatigue life under varying stress conditions ⚙️🔩. At the GRC-SRC meetings (2020–2022), he showcased novel Pb-free soldering approaches to reduce warpage and enhance lifecycle performance 🧪📉. Additionally, he delivered key insights on the mechanical deformation and damage evolution of micro-joints at elevated temperatures 🔍🔥. These presentations underline his expertise in advanced packaging reliability, materials behavior, and interconnect engineering 💻🛠️📦.

🔬 Research Focus 

Dr. Ronit Das focuses on advancing reliability engineering and electronic packaging technologies, particularly involving low-temperature Pb-free solder systems, intermetallic morphology, and micro-joint fatigue analysis. His research integrates experimental mechanics with materials science, using techniques such as electron microscopy, thermal cycling, and finite element modeling to investigate failure mechanisms in SnAgCu, SnBi, and hybrid solder joints. He aims to enhance the durability and performance of flip-chip, 2.5D/3D architectures, and fine-pitch interconnects under harsh operational environments. His innovations are key to improving the thermal-mechanical stability, electromigration resistance, and manufacturing efficiency of next-gen electronic systems.

📚 Publications

Comparing/Optimizing Actual Solder Fatigue Life

Author: Ronit Das
Conference: 2023 Pan Pacific Microelectronics Symposium (Jan 2023)

Early Transient Creep of Single Crystal SnAgCu Solder Joints

Authors: Ronit Das; Sanoop Thekkut; Rajesh Sharma Sivasubramony; Thaer Alghoul; Atif Mahmood; Shantanu Joshi; Carlos Arroyo; Gaurav Sharma; Peter Borgesen
Journal: Journal of Materials Science: Materials in Electronics (June 2022)

Understanding and Preventing Cu–Sn Micro Joint Defects Through Design and Process Control

Authors: Ronit Das et al.
Journal: Journal of Applied Electrochemistry (Oct 2021)

Feasibility of a Low Temperature Soldering Approach

Author: Ronit Das
Conference: TechCon – Semiconductor Research Corporation (Sept 2021)

Reliability of Micro-Joints Formed by a Low Temperature Soldering Approach

Author: Ronit Das
Conference: TechCon – Semiconductor Research Corporation (Sept 2021)

Sporadic Voiding in Cu-Sn Micro-Joints: Understanding and Control

Author: Ronit Das
Conference: TechCon – Semiconductor Research Corporation (Sept 2021)

Strength and Isothermal Fatigue Resistance of SnBi/SnAgCu Joints Reflowed at Low Temperatures

Authors: Ronit Das; Manu Yadav; Thaer Alghoul et al.
Journal: Journal of Electronic Packaging (Sept 2021)

Effect of Intermetallic Morphology Evolution on Void Formation in Ni/Sn/Ni Micro Joints

Author: Ronit Das
Conference: IEEE Electronic Components and Technology Conference (ECTC) (Aug 2020)

Prof. Dr Haigen Gao | Functional Materials | Best Researcher Award

Prof. Dr Haigen Gao | Functional Materials | Best Researcher Award

Prof. Dr. Haigen Gao is a renowned materials scientist at Panzhihua University, China, specializing in computational materials science 🧠🧪. He earned his Ph.D. from Nanjing University and completed a postdoctoral fellowship at Tsinghua University 🎓🔬. His cutting-edge research uses density functional theory (DFT) to predict and design multiferroic and ferroelectric materials ⚛️📊. As a chief scientist for the NSFC 🇨🇳 and author of numerous high-impact publications and patents 📚📈, Prof. Gao combines theoretical depth with real-world application. His work plays a pivotal role in the development of advanced functional materials for next-generation technologies 🧲🧱.

Prof. Dr Haigen Gao, Panzhihua Univeristy, China

Profile

SCOPUS

🎓 Education

Prof. Haigen Gao holds a Ph.D. in Materials Science from Nanjing University, one of China’s premier institutions for scientific research 🧪🎓. Following his doctoral studies, he completed a prestigious postdoctoral fellowship at Tsinghua University, widely recognized as one of the top engineering universities in the world 🌏🏛️. His academic training provided him with a strong foundation in theoretical modeling and materials design 🧠📘. This high-level education equipped him to lead innovative research in computational materials science and physical property prediction 🔬📈. Prof. Gao’s scholarly path reflects a blend of academic excellence and scientific ambition 🌟🧑‍🔬

💼 Experience

Prof. Haigen Gao is an accomplished materials scientist at Panzhihua University, with a strong academic and research background 🏫🔬. He earned his Ph.D. from Nanjing University and completed a prestigious postdoctoral fellowship at Tsinghua University, one of China’s top institutions 🎓🇨🇳. Currently, he serves as Chief Scientist on projects funded by the National Natural Science Foundation of China, leading innovative efforts in materials research 🧪🌍. His expertise centers on theoretical prediction and design of new materials and exploring their physical properties through advanced computational methods 🧠📊. Prof. Gao blends theory with application, driving discovery in modern materials science ⚙️💡.

🧲 Scientific Contributions

He has made significant advancements in 2D multiferroic materials by using density functional theory (DFT) to design stable structures based on BaTiO₃ ⚛️💡. His work revealed that Ni substitution at Ti sites can effectively induce strong coupling between electric and spin orders, overcoming limitations from Ba site distortion and experimental challenges with Ti site replacements 🔬🌀. The resulting magnetoelectric coupling coefficient exceeds 10 V/cm·Oe, outperforming traditional composite systems 📈🔋. These insights offer a promising route for next-generation multifunctional materials used in sensors, memory devices, and spintronics 🧠💾🔧.

🔬 Research Focus

The research focus centers on multiferroic and ferroelectric materials, which exhibit unique combinations of electric, magnetic, and structural properties 🔋🧲🧪. These materials play a crucial role in the development of next-generation memory devices, sensors, actuators, and energy harvesters 💾🎯⚡. The work involves understanding domain dynamics, phase transitions, and structure-property relationships at both nano and macro scales 🔍🔬. By integrating experimental techniques and theoretical modeling, the aim is to design smart, tunable materials for applications in electronics, spintronics, and green technologies 🖥️🔄🌱. This research contributes to advancing miniaturization and multifunctionality in modern electronic systems 📱💡.

📘 Publication

First-principles study on influences of surface and thickness on magnetic and ferroelectric properties of quasi-two-dimensional BaTiO₃ (001) ultrathin film doped with Ni at Ti site

Authors:
H. Gao, Haigen
C. Hu, Chaofan

Journal:
Surfaces and Interfaces, 2025

Dr Huaming Li | Materials Science | Best Researcher Award

Dr Huaming Li | Materials Science | Best Researcher Award

Dr. Huaming Li is an Associate Professor at the College of Physics and Optoelectronics, Taiyuan University of Technology, China. He earned his Ph.D. in Physics from the Georgia Institute of Technology, USA, and has held academic positions at Taiyuan University since 2012. His research focuses on high-pressure thermodynamic behavior of liquid metals and solid solutions. Known for his discovery of linear isothermal regularities and his development of predictive equations of state, Dr. Li integrates fundamental physics with advanced materials science. His scholarly work bridges experimental insight and theoretical modeling in condensed matter and thermal physics.

Dr Huaming Li, Taiyuan University of Technology, China

Profile

SCOPUS

ORCID

🎓 Education

Dr. Huaming Li has a strong academic foundation in physics, beginning with his B.S. (1995–1999) and M.S. (1999–2002) in Theoretical Physics from Lanzhou University, China 🇨🇳. He then earned his Ph.D. in Physics (2002–2009) from the prestigious Georgia Institute of Technology, USA 🇺🇸. His doctoral studies focused on thermodynamic behavior and phase transitions in materials, laying the groundwork for his future in high-pressure physics and condensed matter research. This educational journey equipped him with advanced skills in statistical mechanics, computational physics, and materials theory 📐🧠🔬—essential tools for his innovative work in materials science.

👨‍🏫 Experience

Dr. Huaming Li has rich academic and research experience spanning over a decade in the field of condensed matter and thermodynamic physics 🧪. After earning his Ph.D. from Georgia Tech, he completed a postdoctoral fellowship there, focusing on liquid metals under extreme conditions 🌡️🔬. Currently an Associate Professor at Taiyuan University of Technology, he leads studies on equations of state, entropy, and free volume evolution in high-pressure environments 🔍📊. Dr. Li regularly presents at global conferences like APS, CCMR, and CPS 🌍📢, contributing cutting-edge insights to energy materials, thermal modeling, and phase transition science 🔧⚙️.

🎤 Conference Presentation

Dr. Huaming Li has presented extensively on the thermodynamic behavior of liquid metals under high pressure at prestigious international conferences 🧪🌍. His talks explore linear isotherm regularities, equations of state, and entropy and free volume evolution in metals such as sodium, potassium, indium, and iron under extreme conditions 🔬🌡️. He has delivered findings at the APS March Meetings (USA), CCMR (South Korea), and CPS (China), showcasing his leadership in high-pressure materials research 🧠📊. His work aids in the predictive modeling of metallic liquids, contributing to energy materials design and the understanding of phase transitions ⚙️🧯📈.

⚙️ Research Excellence 

Dr. Huaming Li has made groundbreaking contributions in the field of high-pressure thermodynamics by discovering linear isotherm regularities in liquid metals such as sodium, potassium, gallium, bismuth, and mercury 🧪🧊. His work enables predictive modeling of thermodynamic properties, supporting advanced material design. He also developed theoretical frameworks for polymorphic melting and amorphization in binary solid solutions 🔄🔬. His investigations into anomalous heat capacity behaviors of liquid metals bridge fundamental science and practical engineering applications 📘🔧. Published in top journals like AIP Advances and Physica B, his research is widely recognized and presented at international conferences 🌍📊.

🔬 Research Focus

Dr. Huaming Li’s research centers on the thermodynamics of liquid metals under high pressure ⚙️🌡️, focusing on developing equations of state that describe linear isotherm behaviors in elements such as sodium, potassium, bismuth, and mercury 🧪🔩. He investigates free volume evolution and entropy contributions in condensed matter, especially in glass-forming liquids and metallic alloys 🧊📈. His work explores the structure-property relationships critical to predicting material behavior under extreme conditions, contributing to advancements in energy materials, solid-state physics, and high-performance alloys 🚀🔬. This research bridges theoretical physics with practical materials engineering 🌍🛠️.

📚 Publications

On Heat Capacity of Liquid Mercury Under Pressure
Authors: Huaming Li, Chaochao Bao, Xiaojuan Wang, Yanting Tian, Lin Feng, Ying Zhang, Yongli Sun, Mo Li
Journal: Physica B: Condensed Matter, 2025

Thermodynamic Properties of Liquid Bismuth Under Pressure: New Regularities and an Equation of State
Authors: Huaming Li, Lin Feng, Ying Zhang, Yanting Tian, Yongli Sun, Mo Li
Journal: AIP Advances, 2022

Linear Isotherm Regularities of Liquid Gallium Under Pressure
Authors: Huaming Li, Hao Ding, Yanting Tian, Yongli Sun, Mo Li
Journal: AIP Advances, 2021

Linear Isotherm Regularities of Solid Sodium Under Pressure
Authors: Huaming Li, Hao Ding, Yanting Tian, Yongli Sun, Shiwei Fang
Journal: AIP Advances, 2020

Regularities of Liquid Potassium at Different Temperatures
Authors: Huaming Li, Hao Ding, Yanting Tian, Yong Li Sun, Mo Li
Journal: AIP Advances, 2019

Nonlinearity Acoustic Parameters from Equation of State of Liquid Sodium Under Pressure
Authors: Huaming Li, Xiaoxiao Zhang, Yongli Sun, Mo Li
Journal: AIP Advances, 2017

Thermodynamic Properties of Liquid Sodium Under High Pressure
Authors: Huaming Li, Xiaoxiao Zhang, Yongli Sun, Mo Li
Journal: AIP Advances, 2017

Dr Eun-Gyung Cho | Biomaterials | Best Researcher Award

Dr Eun-Gyung Cho | Biomaterials | Best Researcher Award

Dr. Eun-Gyung Cho is a leading biomedical scientist specializing in extracellular vesicles (EVs), skin biology, and stem cell applications. She currently holds multiple leadership positions, including Director of the H&B Science Center at CHA Meditech Co., Ltd., Director of the Consumer Health 2 Center at CHA Advanced Research Institute, and Adjunct Associate Professor at CHA University. Her career bridges cutting-edge biomedical research with real-world therapeutic and cosmetic applications, particularly in skin regeneration, aging, and immunology. She has published over 50 scientific papers and filed more than 240 patents, demonstrating innovation and scientific excellence across academia and industry.

Dr Eun-Gyung Cho, CHA R&D Institute/CHABio group, South Korea

Profile

ORCID

SCOPUS

🎓 Education

Dr. Eun-Gyung Cho holds a strong academic foundation in biological sciences and biotechnology. She earned her Ph.D. in Biological Sciences from Seoul National University (1998–2002) 🧬🎓, where she specialized in molecular and cellular biology. Prior to that, she completed her M.S. in Life Science at GIST, Kwangju (1996–1998) 🔬📘, gaining expertise in bio-research and developmental biology. Her academic journey began with a B.S. in Agricultural Biology at Seoul National University (1992–1996) 🌱🧪, where she built her initial skills in genetics, plant science, and biotechnology. This educational pathway laid the groundwork for her exceptional career in biomedical innovation.

🏢 Professional Experience

Dr. Eun-Gyung Cho brings over two decades of dynamic experience across academia, research, and biotechnology innovation. She currently serves as Director at CHA Meditech and the CHA Advanced Research Institute, and is an Adjunct Associate Professor at CHA University 🏢🔬📚. Previously, she held senior leadership roles at Amorepacific Corporation, including Team Leader and Chief Scientist, where she led R&D in bio-cosmeceuticals and exosome-based technologies 💄🧫. Her global expertise is further enriched by postdoctoral research at the NIH and Sanford-Burnham Institute in the USA 🌍🧠. Dr. Cho’s career reflects a blend of scientific depth, leadership, and innovation 💡🧪.

🧖‍♀️ Research Experience

Dr. Eun-Gyung Cho has led a distinguished research career in extracellular vesicles (EVs), stem cell biology, and skin science across academia and industry. At CHA Meditech and Amorepacific, she developed innovative biomaterials including EV-based skin boosters, anti-aging formulations, and microbial-derived therapies 🧪🧖‍♀️🌿. Her postdoctoral work at Sanford-Burnham and NIH advanced neurogenesis, cell cycle regulation, and bio-signaling mechanisms 🧠🔬🧫. With over 240 patents and 40+ publications, she has made pioneering contributions in cosmeceuticals, dermaceuticals, and regenerative medicine 🌟📈💊. Her research bridges fundamental science with real-world applications in skin health and personalized biotherapy.

🔬 Research Focus

Dr. Eun-Gyung Cho’s research centers on extracellular vesicles (EVs) 🧫, particularly their roles in intercellular communication, drug delivery, and as biomaterials for dermatological therapy 💉🧴. She specializes in developing skin boosters and biostimulators using EVs, peptides, recombinant proteins, and stem cell-conditioned media 🧬. Her work extends to skin biology 🧖‍♀️—exploring melanogenesis, skin barrier function, and cutaneous immunity—and stem cell biology, including iPSC differentiation into skin and neural lineages 🌱🧠. With deep roots in molecular biology, she also investigates cell cycle regulation, tumorigenesis, and apoptosis, bridging fundamental science with regenerative and aesthetic medicine 🧪💡.

📚 Publications

Human Probiotic Lactobacillus paracasei-Derived Extracellular Vesicles Improve Tumor Necrosis Factor-α-Induced Inflammatory Phenotypes in Human Skin
Authors: Kwang-soo Lee, Yunsik Kim, Jin Hee Lee, Suji Shon, Aram Kim, An Vuong Quynh Pham, Chungho Kim, Dong Hyun Kim, Yoon-Keun Kim, Eun-Gyung Cho
Journal: Cells, 2023

Comparative Lipidomic Analysis of Extracellular Vesicles Derived from Lactobacillus plantarum APsulloc 331261 Living in Green Tea Leaves Using Liquid Chromatography-Mass Spectrometry
Authors: Hyoseon Kim, Minjung Kim, Kilsun Myoung, Wanil Kim, Jaeyoung Ko, Kwang Pyo Kim, Eun-Gyung Cho
Journal: International Journal of Molecular Sciences, 2020

Kojyl Cinnamate Ester Derivatives Increase Adiponectin Expression and Stimulate Adiponectin-Induced Hair Growth Factors in Human Dermal Papilla Cells
Authors: Phil June Park, Eun-Gyung Cho
Journal: International Journal of Molecular Sciences, 2019

Circadian Expression of TIMP3 Is Disrupted by UVB Irradiation and Recovered by Green Tea Extracts
Authors: Sunyoung Park, Eun-Soo Lee, Nok-Hyun Park, Kyeonghwan Hwang, Eun-Gyung Cho
Journal: International Journal of Molecular Sciences, 2019

Prof Targo Kalamees | Material Degradation and Corrosion | Outstanding Scientist Award

Prof Targo Kalamees | Material Degradation and Corrosion | Outstanding Scientist Award

Prof. Targo Kalamees is an internationally recognized expert in building physics, with more than two decades of experience in research, teaching, and scientific leadership. He currently serves as a tenured full professor at the School of Engineering, Department of Civil Engineering and Architecture at Tallinn University of Technology. His work focuses on the hygrothermal behavior of buildings, energy efficiency, renovation strategies, and climate resilience in construction. Through a career marked by interdisciplinary research and global collaboration, he has made transformative contributions to sustainable building technologies and design methodologies tailored for cold and variable climates.

Prof Targo Kalamees, Tallinn University of Technology, Estonia

Profile

ORCID

SCOPUS

🎓 Education

Prof. Targo Kalamees has a robust academic foundation in civil engineering and building physics. He earned his Doctoral Degree in 2006 from Tallinn University of Technology, focusing on hygrothermal criteria for the design and simulation of buildings 🏗️📊. Prior to this, he completed a Master’s Degree in 1999 at the same university, specializing in the hygrothermal performance of externally insulated walls 🧱💧. His academic journey began with a MSc-equivalent degree in Civil Engineering (1996) and an earlier diploma in geodesy from TTK University (1991) 📐🌍. This progressive education laid the foundation for his scientific excellence in sustainable construction and building physics 🏠📚.

🏛️ Experience

Prof. Targo Kalamees has extensive academic and research experience in building physics and energy efficiency. Since 2018, he has been a Tenured Full Professor at Tallinn University of Technology, where he also previously served as Head of the Chair of Building Physics and Energy Efficiency. He has conducted postdoctoral research at Helsinki University of Technology and was a Visiting Research Fellow at Lund University. His roles have centered on climate-resilient buildings, moisture-safe construction, and sustainable renovation strategies, combining leadership, scientific excellence, and international collaboration. 🧱🌡️🏛️🔬🌐

🎓 Supervisory Excellence

Prof. Targo Kalamees is a highly accomplished doctoral supervisor, having successfully guided over ten PhD candidates in building physics and sustainable construction 🏗️📚. His students’ research spans key areas such as energy renovation of apartment buildings, air leakage and thermal bridge modeling, hygrothermal analysis of wall systems, and renovation strategies for wooden structures 🌬️🏡🌡️. His guidance has shaped groundbreaking work on nearly zero-energy buildings (nZEB), prefabricated insulation systems, and durable retrofit technologies 🔋🧱🔧. With deep expertise and visionary mentorship, he continues to empower future researchers to tackle climate-responsive and energy-efficient building challenges 🧑‍🏫🌍🌱.

🔬 Research Focus

Prof. Targo Kalamees focuses on advancing sustainable and resilient building technologies through research in building physics, particularly hygrothermal performance of envelope structures 🧱💧🌡️. His work integrates modelling, lab experiments, and field studies to understand and mitigate heat loss, air leakage, and thermal bridging in buildings 🧪🔍🏠. He is a pioneer in climate-resilient renovation, promoting indoor comfort, energy efficiency, and the circular economy in construction ♻️🌍. His goal is to develop future-proof buildings that withstand evolving climate challenges while supporting low-carbon lifestyles 🌦️🔋. His research bridges engineering, environmental sustainability, and applied building science 🛠️📊.

Publications 📚

Indoor Climate Loads for Dwellings in Different Cold Climates to Assess Hygrothermal Performance of Building Envelopes
Authors: Ilomets, S.; Kalamees, T.; Tariku, F.
Journal: Canadian Journal of Civil Engineering, 2019

Influence of Interior Layer Properties to Moisture Dry-Out of CLT Walls
Authors: Kukk, V.; Külaots, A.; Kers, J.; Kalamees, T.
Journal: Canadian Journal of Civil Engineering, 2019

Influence of Window Details on the Energy Performance of an nZEB
Authors: Kalbe, K.; Kalamees, T.
Journal: Journal of Sustainable Architecture and Civil Engineering, 2019

Renovation of Apartment Buildings with Prefabricated Modular Panels
Authors: Kuusk, K.; Pihelo, P.; Kalamees, T.
Journal: E3S Web of Conferences, 2019

Summer Thermal Comfort in New and Old Apartment Buildings
Authors: Maivel, M.; Kurnitski, J.; Kalamees, T.
Journal: Windsor Conference Proceedings, 2019

The Effects of Production Technologies on the Air Permeability and Crack Development of Cross-Laminated Timber
Authors: Kukk, V.; Kalamees, T.; Kers, J.
Journal: Journal of Building Physics, 2019

Indoor Hygrothermal Loads for the Deterministic and Stochastic Design of the Building Envelope for Dwellings in Cold Climates
Authors: Ilomets, S.; Kalamees, T.; Vinha, J.
Journal: Journal of Building Physics, 2018

Internal Moisture Excess of Residential Buildings in Finland
Authors: Vinha, J.; Salminen, M.; Salminen, K.; Kalamees, T.; Kurnitski, J.; Kiviste, M.
Journal: Journal of Building Physics, 2018